Moment equations for optical pulses in dispersive and dissipative systems

被引:14
|
作者
Kozlov, MV
McKinstrie, CJ [1 ]
Xie, C
机构
[1] Lucent Technol, Bell Labs, Holmdel, NJ 07733 USA
[2] Ecole Polytech, Ctr Phys Theor, F-91120 Palaiseau, France
关键词
D O I
10.1016/j.optcom.2005.02.078
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The moment method is used to derive evolution equations for the energy, width and chirp of an optical pulse in a dispersive and dissipative (filtered) system. This method is conceptually simpler than the variational and soliton-perturbation methods, and allows the dispersion and dissipation coefficients to have arbitrary relative magnitude. The moment equations are used to study the effects of filtering on pulse dynamics and equilibria, and their predictions are compared to the results of numerical simulations based on the Ginzburg-Landau equation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:194 / 208
页数:15
相关论文
共 50 条
  • [31] Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems
    Baraillon, J.
    Taurel, B.
    Labeye, P.
    Duraffourg, L.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [32] Noise Effect on Pulses in Passive Mode-Locking with Unrestricted Dispersive and Dissipative Parameters
    Katz, Michael
    Gordon, Ariel
    Gat, Omri
    Fischer, Baruch
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 2424 - 2425
  • [33] Phenomenological equations of motion of dissipative optical solitons
    N. N. Rozanov
    Optics and Spectroscopy, 2007, 102 : 734 - 738
  • [34] Phenomenological equations of motion of dissipative optical solitons
    Rozanov, N. N.
    OPTICS AND SPECTROSCOPY, 2007, 102 (05) : 734 - 738
  • [35] Analyticity of the attractors of dissipative-dispersive systems in higher dimensions
    Evripidou, Charalampos A.
    Smyrlis, Yiorgos-Sokratis
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7733 - 7741
  • [36] Dissipative coupling, dispersive coupling, and their combination in cavityless optomechanical systems
    Karpenko, Alexandr
    Vyatchanin, Sergey P.
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [37] Linearly implicit schemes for a class of dispersive-dissipative systems
    Akrivis, Georgios
    Smyrlis, Yiorgos-Sokratis
    CALCOLO, 2011, 48 (02) : 145 - 172
  • [38] COHERENT STRUCTURES IN NONLOCAL DISPERSIVE ACTIVE-DISSIPATIVE SYSTEMS
    Lin, Te-Sheng
    Pradas, Marc
    Kalliadasis, Serafim
    Papageorgiou, Demetrios T.
    Tseluiko, Dmitri
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (02) : 538 - 563
  • [39] ON THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO NONLINEAR, DISPERSIVE, DISSIPATIVE WAVE-EQUATIONS
    BONA, J
    PROMISLOW, K
    WAYNE, G
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 265 - 277
  • [40] Influence of the dispersive and dissipative scales α and β on the energy spectrum of the Navier-Stokes αβ equations
    Chen, Xuemei
    Fried, Eliot
    PHYSICAL REVIEW E, 2008, 78 (04):