Edge-Guided Recurrent Convolutional Neural Network for Multitemporal Remote Sensing Image Building Change Detection

被引:86
|
作者
Bai, Beifang [1 ,2 ]
Fu, Wei [3 ]
Lu, Ting [1 ,2 ]
Li, Shutao [1 ,2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Visual Percept & Artificial Intelligence, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image edge detection; Buildings; Logic gates; Convolutional neural networks; Task analysis; Dams; Building change detection; edge structure prior; multitemporal images; recurrent convolutional neural network (CNN); SLOW FEATURE ANALYSIS; FUSION; MAD;
D O I
10.1109/TGRS.2021.3106697
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Building change detection is a very important application in the field of remote sensing. Recently, deep learning (DL) has been introduced to solve the change detection task and achieved good performance, mainly due to the capability of automatically learning deep features. However, the lack of using prior knowledge (e.g., edge structure information) leads to inaccurate detection results, especially in the areas of building boundaries. To solve this problem, an end-to-end DL method for building change detection, named by edge-guided recurrent convolutional neural network (EGRCNN), is proposed in this article. The main idea is to incorporate both discriminative information and edge structure prior in one framework to improve change detection results, especially to generate more accurate building boundaries. First, a siamese convolutional neural network is trained to simultaneously extract primary multilevel features from multitemporal images. Then, a difference analysis module (DAM) is introduced to further produce discriminative features, which is constructed based on the basic long short-term memory module. Finally, both the discriminative features and the estimated edge structure information are jointly exploited to predict building change map. On one hand, the proposed DAM helps to enhance the discrimination between the changed and unchanged regions. On the other hand, the prior edge information is used to push the predicted changed buildings to preserve the original structure, which can further improve the accuracy of building change detection. Experimental results demonstrate that the performance of the proposed method outperforms several state-of-the-art approaches, in terms of objective metrics and visual comparison results.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Remote Sensing Image Fusion with Convolutional Neural Network
    Zhong J.
    Yang B.
    Huang G.
    Zhong F.
    Chen Z.
    Sensing and Imaging, 2016, 17 (1):
  • [22] Siamese Attentive Convolutional Network for Effective Remote Sensing Image Change Detection
    Wan, Zifu
    Yan, Tianyu
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 167 - 176
  • [23] An Efficient Lightweight Neural Network for Remote Sensing Image Change Detection
    Song, Kaiqiang
    Cui, Fengzhi
    Jiang, Jie
    REMOTE SENSING, 2021, 13 (24)
  • [24] REMOTE SENSING IMAGE CHANGE DETECTION BASED ON DEEP SIAMESE NEURAL NETWORK WITH CONVOLUTIONAL LSTM AND CHANNEL ATTENTION
    Wang, Linlin
    Zhang, Junping
    Guo, Qingle
    Liu, Jian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3227 - 3230
  • [25] Edge-Guided Non-Local Fully Convolutional Network for Salient Object Detection
    Tu, Zhengzheng
    Ma, Yan
    Li, Chenglong
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 582 - 593
  • [26] Building change detection using the parallel spatial-channel attention block and edge-guided deep network
    Eftekhari, Akram
    Samadzadegan, Farhad
    Javan, Farzaneh Dadrass
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [27] Edge-Guided Generative Adversarial Network for Image Inpainting
    Xu, Shunxin
    Liu, Dong
    Xiong, Zhiwei
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [28] Edge Guided and Dynamically Deformable Transformer Network for Remote Sensing Images Change Detection
    Lei T.
    Zhai Y.-J.
    Xu Y.-T.
    Wang Y.-B.
    Gong M.-G.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (01): : 107 - 117
  • [29] Remote Sensing Image Fusion With Deep Convolutional Neural Network
    Shao, Zhenfeng
    Cai, Jiajun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) : 1656 - 1669
  • [30] Improved convolutional neural network in remote sensing image classification
    Binghui Xu
    Neural Computing and Applications, 2021, 33 : 8169 - 8180