Percolation in Self-Similar Networks

被引:41
作者
Angeles Serrano, M. [1 ]
Krioukov, Dmitri [2 ]
Boguna, Marian [3 ]
机构
[1] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain
[2] Univ Calif San Diego, CAIDA, La Jolla, CA 92093 USA
[3] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
基金
美国国家科学基金会;
关键词
GRAPHS; RESILIENCE; INTERNET;
D O I
10.1103/PhysRevLett.106.048701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.
引用
收藏
页数:4
相关论文
共 24 条
[11]   Percolation on correlated networks [J].
Goltsev, A. V. ;
Dorogovtsev, S. N. ;
Mendes, J. F. F. .
PHYSICAL REVIEW E, 2008, 78 (05)
[12]   Universal properties of growing networks [J].
Krapivsky, PL ;
Derrida, B .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (04) :714-724
[13]   A CRITICAL-POINT FOR RANDOM GRAPHS WITH A GIVEN DEGREE SEQUENCE [J].
MOLLOY, M ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (2-3) :161-179
[14]   Random Graphs with Clustering [J].
Newman, M. E. J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[15]   Properties of highly clustered networks [J].
Newman, MEJ .
PHYSICAL REVIEW E, 2003, 68 (02) :6
[16]   Efficient Monte Carlo algorithm and high-precision results for percolation [J].
Newman, MEJ ;
Ziff, RM .
PHYSICAL REVIEW LETTERS, 2000, 85 (19) :4104-4107
[17]   Critical phenomena on heterogeneous small-world networks [J].
Ostilli, M. ;
Mendes, J. F. F. .
EPL, 2010, 92 (04)
[18]   Origin of degree correlations in the Internet and other networks [J].
Park, J ;
Newman, MEJ .
PHYSICAL REVIEW E, 2003, 68 (02) :7
[19]   Self-similarity of complex networks and hidden metric spaces [J].
Serrano, M. Angeles ;
Krioukov, Dmitri ;
Boguna, Marian .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[20]   Clustering in complex networks.: I.: General formalism [J].
Serrano, M. Angeles ;
Boguna, Marian .
PHYSICAL REVIEW E, 2006, 74 (05)