Percolation in Self-Similar Networks

被引:41
作者
Angeles Serrano, M. [1 ]
Krioukov, Dmitri [2 ]
Boguna, Marian [3 ]
机构
[1] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain
[2] Univ Calif San Diego, CAIDA, La Jolla, CA 92093 USA
[3] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
基金
美国国家科学基金会;
关键词
GRAPHS; RESILIENCE; INTERNET;
D O I
10.1103/PhysRevLett.106.048701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.
引用
收藏
页数:4
相关论文
共 24 条
[1]  
[Anonymous], 2008, NETW HETEROG MEDIA
[2]   Cut-offs and finite size effects in scale-free networks [J].
Boguña, M ;
Pastor-Satorras, R ;
Vespignani, A .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :205-209
[3]   Class of correlated random networks with hidden variables -: art. no. 036112 [J].
Boguñá, M ;
Pastor-Satorras, R .
PHYSICAL REVIEW E, 2003, 68 (03) :13
[4]   Langevin approach for the dynamics of the contact process on annealed scale-free networks [J].
Boguna, Marian ;
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW E, 2009, 79 (03)
[5]   Conformal invariance in percolation, self-avoiding walks, and related problems [J].
Cardy, J .
ANNALES HENRI POINCARE, 2003, 4 (Suppl 1) :S371-S384
[6]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[7]   Percolation critical exponents in scale-free networks [J].
Cohen, R ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036113
[8]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[9]   Maximum likelihood: Extracting unbiased information from complex networks [J].
Garlaschelli, Diego ;
Loffredo, Maria I. .
PHYSICAL REVIEW E, 2008, 78 (01)
[10]   Bond percolation on a class of clustered random networks [J].
Gleeson, James P. .
PHYSICAL REVIEW E, 2009, 80 (03)