Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation

被引:70
|
作者
Hellgren, Maria [1 ]
Rohr, Daniel R. [1 ,2 ]
Gross, E. K. U. [1 ]
机构
[1] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany
[2] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 136卷 / 03期
关键词
DENSITY-FUNCTIONAL THEORY; EXCHANGE-CORRELATION POTENTIALS; BODY PERTURBATION-THEORY; CORRELATION-ENERGY; SURFACE; GAP;
D O I
10.1063/1.3676174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-consistent correlation potentials for H-2 and LiH for various inter-atomic separations are obtained within the random phase approximation (RPA) of density functional theory. The RPA correlation potential shows a peak at the bond midpoint, which is an exact feature of the true correlation potential, but lacks another exact feature: the step important to preserve integer charge on the atomic fragments in the dissociation limit. An analysis of the RPA energy functional in terms of fractional charge is given which confirms these observations. We find that the RPA misses the derivative discontinuity at odd integer particle numbers but explicitly eliminates the fractional spin error in the exact-exchange functional. The latter finding explains the improved total energy in the dissociation limit. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676174]
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Particle-hole excitations within a self-consistent random-phase approximation
    Gambacurta, D.
    Catara, F.
    PHYSICAL REVIEW B, 2008, 77 (20):
  • [12] Self-consistent random phase approximation within the O(5) model and Fermi transitions
    Krmpotic, F
    de Passos, EJV
    Delion, DS
    Dukelsky, J
    Schuck, P
    NUCLEAR PHYSICS A, 1998, 637 (02) : 295 - 324
  • [13] Separable random phase approximation for self-consistent nuclear models
    Nesterenko, VO
    Kvasil, J
    Reinhard, PG
    PHYSICAL REVIEW C, 2002, 66 (04):
  • [14] Thermodynamic properties of hot nuclei within the self-consistent quasiparticle random-phase approximation
    Hung, N. Quang
    Dang, N. Dinh
    PHYSICAL REVIEW C, 2010, 82 (04):
  • [15] Comparison between wave functions in the random phase approximation, renormalized random phase approximation, and self-consistent random phase approximation methods
    Hirsch, JG
    Civitarese, O
    Reboiro, M
    PHYSICAL REVIEW C, 1999, 60 (02): : 5
  • [16] Analytic energy gradients for the self-consistent direct random phase approximation
    Thierbach, Adrian
    Goerling, Andreas
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (13):
  • [17] Self-consistent random phase approximation in a schematic field theoretical model
    Bertrand, T
    Schuck, P
    Chanfray, G
    Aouissat, Z
    Dukelsky, J
    PHYSICAL REVIEW C, 2001, 63 (02): : 8
  • [18] Self-consistent relativistic random-phase approximation with vacuum polarization
    Haga, A
    Toki, H
    Tamenaga, S
    Horikawa, Y
    Yadav, HL
    PHYSICAL REVIEW C, 2005, 72 (03):
  • [20] Towards a self-consistent random-phase approximation for Fermi systems
    Catara, F
    Piccitto, G
    Sambataro, M
    VanGiai, N
    PHYSICAL REVIEW B, 1996, 54 (24): : 17536 - 17546