Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation

被引:70
|
作者
Hellgren, Maria [1 ]
Rohr, Daniel R. [1 ,2 ]
Gross, E. K. U. [1 ]
机构
[1] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany
[2] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 136卷 / 03期
关键词
DENSITY-FUNCTIONAL THEORY; EXCHANGE-CORRELATION POTENTIALS; BODY PERTURBATION-THEORY; CORRELATION-ENERGY; SURFACE; GAP;
D O I
10.1063/1.3676174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-consistent correlation potentials for H-2 and LiH for various inter-atomic separations are obtained within the random phase approximation (RPA) of density functional theory. The RPA correlation potential shows a peak at the bond midpoint, which is an exact feature of the true correlation potential, but lacks another exact feature: the step important to preserve integer charge on the atomic fragments in the dissociation limit. An analysis of the RPA energy functional in terms of fractional charge is given which confirms these observations. We find that the RPA misses the derivative discontinuity at odd integer particle numbers but explicitly eliminates the fractional spin error in the exact-exchange functional. The latter finding explains the improved total energy in the dissociation limit. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676174]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Accurate Correlation Potentials from the Self-Consistent Random Phase Approximation
    Trushin, Egor
    Fauser, Steffen
    Moelkner, Andreas
    Erhard, Jannis
    Goerling, Andreas
    PHYSICAL REVIEW LETTERS, 2025, 134 (01)
  • [2] Efficient self-consistent treatment of electron correlation within the random phase approximation
    Bleiziffer, Patrick
    Hesselmann, Andreas
    Goerling, Andreas
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (08):
  • [3] SELF-CONSISTENT RANDOM PHASE APPROXIMATION
    OSTLUND, N
    KARPLUS, M
    CHEMICAL PHYSICS LETTERS, 1971, 11 (04) : 450 - &
  • [4] SELF-CONSISTENT FORM OF THE RANDOM PHASE APPROXIMATION
    ANTSYGINA, TN
    SLYUSAREV, VA
    SVIDZINSKII, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1989, 81 (02) : 1215 - 1221
  • [5] Limitations of the number self-consistent random phase approximation
    Mariano, A
    Hirsch, JG
    PHYSICAL REVIEW C, 2000, 61 (05): : 7
  • [6] The number self-consistent renormalized random phase approximation
    Mariano, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (30-31): : 5334 - 5337
  • [7] The number self-consistent renormalized random phase approximation
    Mariano, A.
    RECENT PROGRESS IN MANY-BODY THEORIES, PROCEEDINGS, 2006, 10 : 380 - +
  • [8] Pairing within the self-consistent quasiparticle random-phase approximation at finite temperature
    Dang, N. Dinh
    Hung, N. Quang
    PHYSICAL REVIEW C, 2008, 77 (06):
  • [9] Particle-number conservation within self-consistent random-phase approximation
    Dang, ND
    PHYSICAL REVIEW C, 2005, 71 (02):
  • [10] Self-consistent random-phase approximation at finite temperature within the Richardson model
    Dang, Nguyen Dinh
    Tanabe, Kosai
    PHYSICAL REVIEW C, 2006, 74 (03):