On (a,d)-antimagic special trees, unicyclic graphs and complete bipartite graphs

被引:0
|
作者
Nicholas, T [1 ]
Somasundaram, S
Vilfred, V
机构
[1] St Judes Coll, Dept Math, Thuthur 629176, Tamil Nadu, India
[2] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli, Tamil Nadu, India
关键词
(a; d)-; antimagic; caterpillars; unicyclic graphs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G(V, E) is said to be (a, d)- antimagic if there exist positive integers a and d and a bijection f : E --> {1, 2,...,\E\} such that the induced mapping g(f): V --> N, defined by g (v) = Sigma {f(u,v)\(u, v) is an element of E(G)) is injective and g(f) (V) = {a, a+d, a+2d,..., a+(\V\- 1)d}. In this paper, we mainly investigate (a, d)- antimagic labeling of some special trees, complete bipartite graphs K-mn and categorize (a, d)- antimagic unicyclic graphs.
引用
收藏
页码:207 / 220
页数:14
相关论文
共 50 条
  • [31] The Randic Indices of Trees, Unicyclic Graphs and Bicyclic Graphs
    Li, Jianxi
    Balachandran, S.
    Ayyaswamy, S. K.
    Venkatakrishnan, Y. B.
    ARS COMBINATORIA, 2016, 127 : 409 - 419
  • [32] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [33] GraPacking Bipartite Graphs with Covers of Complete Bipartite Graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 276 - +
  • [34] On the decomposition of graphs into complete bipartite graphs
    Dong, Jinquan
    Liu, Yanpei
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 255 - 262
  • [35] On the Decomposition of Graphs into Complete Bipartite Graphs
    Jinquan Dong
    Yanpei Liu
    Graphs and Combinatorics, 2007, 23 : 255 - 262
  • [36] Decomposition of complete graphs into unicyclic graphs with eight edges
    Freyberg, Bryan
    Froncek, Dalibor
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 114 : 113 - 131
  • [37] REMARKS ON MINIMAL ENERGIES OF UNICYCLIC BIPARTITE GRAPHS
    Zhang, Bing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (02) : 487 - 494
  • [38] Permanental bounds for the signless Laplacian matrix of bipartite graphs and unicyclic graphs
    Li, Shuchao
    Zhang, Li
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (02): : 145 - 158
  • [39] Decompositions of complete graphs and complete bipartite graphs into isomorphic supersubdivision graphs
    Sethuraman, G
    Selvaraju, P
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 137 - 149
  • [40] Number of Spanning Trees of Different Products of Complete and Complete Bipartite Graphs
    Daoud, S. N.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014