Unifying Quantum and Classical Speed Limits on Observables

被引:52
|
作者
Garcia-Pintos, Luis Pedro [1 ,2 ]
Nicholson, Schuyler B. [3 ]
Green, Jason R. [4 ,5 ,6 ]
del Campo, Adolfo [6 ,7 ,8 ]
Gorshkov, Alexey, V [1 ,2 ]
机构
[1] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[3] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA
[5] Univ Massachusetts, Ctr Quantum & Nonequilibrium Syst, Boston, MA 02125 USA
[6] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
[7] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[8] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain
基金
美国国家科学基金会;
关键词
STATISTICAL DISTANCE; RELATIVE ENTROPY; GEOMETRY;
D O I
10.1103/PhysRevX.12.011038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The presence of noise or the interaction with an environment can radically change the dynamics of observables of an otherwise isolated quantum system. We derive a bound on the speed with which observables of open quantum systems evolve. This speed limit is divided into Mandelstam and Tamm's original time-energy uncertainty relation and a time-information uncertainty relation recently derived for classical systems, and both are generalized to open quantum systems. By isolating the coherent and incoherent contributions to the system dynamics, we derive both lower and upper bounds on the speed of evolution. We prove that the latter provide tighter limits on the speed of observables than previously known quantum speed limits and that a preferred basis of speed operators serves to completely characterize the observables that saturate the speed limits. We use this construction to bound the effect of incoherent dynamics on the evolution of an observable and to find the Hamiltonian that gives the maximum coherent speedup to the evolution of an observable.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Classical and quantum-mechanical observables by perturbation theory
    Fernández, FM
    PHYSICS LETTERS A, 2003, 312 (5-6) : 307 - 314
  • [22] BEHAVIOR PATTERNS OF OBSERVABLES IN QUANTUM-CLASSICAL LIMIT
    DUMITRU, S
    VERRIEST, EI
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1785 - 1789
  • [23] DUALITY OF OBSERVABLES AND GENERATORS IN CLASSICAL AND QUANTUM-MECHANICS
    GRGIN, E
    PETERSEN, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (06) : 764 - 769
  • [24] Classical and quantum limits in Bohmian quantum cosmology
    Shojai, F
    Shirinifard, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (08): : 1333 - 1345
  • [25] Action quantum speed limits
    O'Connor, Eoin
    Guarnieri, Giacomo
    Campbell, Steve
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [26] ON THE CLASSICAL LIMITS OF QUANTUM STATISTICAL DISTRIBUTIONS
    FUJITA, S
    SCHUBERT, R
    HO, CT
    LEE, EK
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (11): : 855 - 873
  • [27] Classical limits for quantum maps on the torus
    Lesniewski, A
    Rubin, R
    Salwen, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) : 1835 - 1847
  • [28] Quantum duality classical and quasiclassical limits
    Lyakhovsky, VD
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 (2-3) : 227 - 234
  • [29] Fundamental Limits of Classical and Quantum Imaging
    Perez-Delgado, Carlos A.
    Pearce, Mark E.
    Kok, Pieter
    PHYSICAL REVIEW LETTERS, 2012, 109 (12)
  • [30] Quantum limits on classical permanent memories
    deMelo, CARS
    PHYSICAL REVIEW B, 1996, 53 (11): : 6931 - 6934