Shared computational principles for language processing in humans and deep language models

被引:157
|
作者
Goldstein, Ariel [1 ,2 ,3 ]
Zada, Zaid [1 ,2 ]
Buchnik, Eliav [3 ]
Schain, Mariano [3 ]
Price, Amy [1 ,2 ]
Aubrey, Bobbi [1 ,2 ,4 ]
Nastase, Samuel A. [1 ,2 ]
Feder, Amir [3 ]
Emanuel, Dotan [3 ]
Cohen, Alon [3 ]
Jansen, Aren [3 ]
Gazula, Harshvardhan [1 ,2 ]
Choe, Gina [1 ,2 ,4 ]
Rao, Aditi [1 ,2 ,4 ]
Kim, Catherine [1 ,2 ,4 ]
Casto, Colton [1 ,2 ]
Fanda, Lora [4 ]
Doyle, Werner [4 ]
Friedman, Daniel [4 ]
Dugan, Patricia [4 ]
Melloni, Lucia [5 ]
Reichart, Roi [6 ]
Devore, Sasha [4 ]
Flinker, Adeen [4 ]
Hasenfratz, Liat [1 ,2 ]
Levy, Omer [7 ]
Hassidim, Avinatan [3 ]
Brenner, Michael [3 ,8 ]
Matias, Yossi [3 ]
Norman, Kenneth A. [1 ,2 ]
Devinsky, Orrin [4 ]
Hasson, Uri [1 ,2 ,3 ]
机构
[1] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA
[2] Princeton Univ, Neurosci Inst, Princeton, NJ 08544 USA
[3] Google Res, Mountain View, CA 94043 USA
[4] NYU, Grossman Sch Med, New York, NY USA
[5] Max Planck Inst Empir Aesthet, Frankfurt, Germany
[6] Technion Israel Inst Technol, Fac Ind Engn & Management, Haifa, Israel
[7] Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv, Israel
[8] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
WORDS; TIMESCALES; COMPONENT; FUTURE;
D O I
10.1038/s41593-022-01026-4
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language. Deep language models have revolutionized natural language processing. The paper discovers three computational principles shared between deep language models and the human brain, which can transform our understanding of the neural basis of language.
引用
收藏
页码:369 / +
页数:28
相关论文
共 50 条
  • [21] Computational Intelligence for Natural Language Processing
    Cambria, Erik
    White, Bebo
    Durrani, Tariq S.
    Howard, Newton
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2014, 9 (01) : 19 - U1131
  • [22] Backdoor Learning of Language Models in Natural Language Processing
    University of Michigan
    1600,
  • [23] Computational Linguistics and Natural Language Processing
    Tsujii, Jun'ichi
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, PT I, 2011, 6608 : 52 - 67
  • [24] THE ROLE OF MODELS OF LANGUAGE PROCESSING IN REHABILITATION OF LANGUAGE IMPAIRMENTS
    HILLIS, AE
    APHASIOLOGY, 1993, 7 (01) : 5 - 26
  • [25] Accelerating materials language processing with large language models
    Jaewoong Choi
    Byungju Lee
    Communications Materials, 5
  • [26] Computational linguistics processing in indigenous language
    Parameshachari, B. D.
    Rak, Tomasz
    De Silva, Liyanage Chandratilak
    PATTERN RECOGNITION LETTERS, 2022, 163 : 180 - 181
  • [27] Natural Language Processing and Computational Linguistics
    Tsujii, Junichi
    COMPUTATIONAL LINGUISTICS, 2021, 47 (04) : 707 - 727
  • [28] Accelerating materials language processing with large language models
    Choi, Jaewoong
    Lee, Byungju
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [29] Natural language processing in the era of large language models
    Zubiaga, Arkaitz
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 6
  • [30] Evaluating Computational Language Models with Scaling Properties of Natural Language
    Takahashi, Shuntaro
    Tanaka-Ishii, Kumiko
    COMPUTATIONAL LINGUISTICS, 2019, 45 (03) : 481 - 514