Shared computational principles for language processing in humans and deep language models

被引:157
|
作者
Goldstein, Ariel [1 ,2 ,3 ]
Zada, Zaid [1 ,2 ]
Buchnik, Eliav [3 ]
Schain, Mariano [3 ]
Price, Amy [1 ,2 ]
Aubrey, Bobbi [1 ,2 ,4 ]
Nastase, Samuel A. [1 ,2 ]
Feder, Amir [3 ]
Emanuel, Dotan [3 ]
Cohen, Alon [3 ]
Jansen, Aren [3 ]
Gazula, Harshvardhan [1 ,2 ]
Choe, Gina [1 ,2 ,4 ]
Rao, Aditi [1 ,2 ,4 ]
Kim, Catherine [1 ,2 ,4 ]
Casto, Colton [1 ,2 ]
Fanda, Lora [4 ]
Doyle, Werner [4 ]
Friedman, Daniel [4 ]
Dugan, Patricia [4 ]
Melloni, Lucia [5 ]
Reichart, Roi [6 ]
Devore, Sasha [4 ]
Flinker, Adeen [4 ]
Hasenfratz, Liat [1 ,2 ]
Levy, Omer [7 ]
Hassidim, Avinatan [3 ]
Brenner, Michael [3 ,8 ]
Matias, Yossi [3 ]
Norman, Kenneth A. [1 ,2 ]
Devinsky, Orrin [4 ]
Hasson, Uri [1 ,2 ,3 ]
机构
[1] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA
[2] Princeton Univ, Neurosci Inst, Princeton, NJ 08544 USA
[3] Google Res, Mountain View, CA 94043 USA
[4] NYU, Grossman Sch Med, New York, NY USA
[5] Max Planck Inst Empir Aesthet, Frankfurt, Germany
[6] Technion Israel Inst Technol, Fac Ind Engn & Management, Haifa, Israel
[7] Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv, Israel
[8] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
WORDS; TIMESCALES; COMPONENT; FUTURE;
D O I
10.1038/s41593-022-01026-4
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language. Deep language models have revolutionized natural language processing. The paper discovers three computational principles shared between deep language models and the human brain, which can transform our understanding of the neural basis of language.
引用
收藏
页码:369 / +
页数:28
相关论文
共 50 条
  • [1] Shared computational principles for language processing in humans and deep language models
    Ariel Goldstein
    Zaid Zada
    Eliav Buchnik
    Mariano Schain
    Amy Price
    Bobbi Aubrey
    Samuel A. Nastase
    Amir Feder
    Dotan Emanuel
    Alon Cohen
    Aren Jansen
    Harshvardhan Gazula
    Gina Choe
    Aditi Rao
    Catherine Kim
    Colton Casto
    Lora Fanda
    Werner Doyle
    Daniel Friedman
    Patricia Dugan
    Lucia Melloni
    Roi Reichart
    Sasha Devore
    Adeen Flinker
    Liat Hasenfratz
    Omer Levy
    Avinatan Hassidim
    Michael Brenner
    Yossi Matias
    Kenneth A. Norman
    Orrin Devinsky
    Uri Hasson
    Nature Neuroscience, 2022, 25 : 369 - 380
  • [2] COMPUTATIONAL MODELS OF LANGUAGE PROCESSING
    STABLER, EP
    BEHAVIORAL AND BRAIN SCIENCES, 1986, 9 (03) : 550 - 551
  • [3] Cognitive Computational Neuroscience of Language: Using Computational Models to Investigate Language Processing in the Brain
    Lopopolo, Alessandro
    Fedorenko, Evelina
    Levy, Roger
    Rabovsky, Milena
    NEUROBIOLOGY OF LANGUAGE, 2024, 5 (01): : 1 - 6
  • [4] On the Explainability of Natural Language Processing Deep Models
    El Zini, Julia
    Awad, Mariette
    ACM COMPUTING SURVEYS, 2023, 55 (05)
  • [5] Figurative Language Processing: A Linguistically Informed Feature Analysis of the Behavior of Language Models and Humans
    Jang, Hyewon
    Yu, Qi
    Frassinelli, Diego
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9816 - 9832
  • [6] Shared Processing of Language and Music
    Atherton, Ryan P.
    Chrobak, Quin M.
    Rauscher, Frances H.
    Karst, Aaron T.
    Hanson, Matt D.
    Steinert, Steven W.
    Bowe, Kyra L.
    EXPERIMENTAL PSYCHOLOGY, 2018, 65 (01) : 40 - 48
  • [7] A Targeted Assessment of Incremental Processing in Neural Language Models and Humans
    Wilcox, Ethan Gotlieb
    Vani, Pranali
    Levy, Roger P.
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 939 - 952
  • [8] Advanced computational models and learning theories for spoken language processing
    Nakamura, Atsushi
    Watanabe, Shinji
    Hori, Takaaki
    McDermott, Erik
    Katagiri, Shigeru
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (02) : 5 - +
  • [9] Shallow language processing, deep language processing and domain ontologies
    Uszkoreit, H
    Proceedings of the 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE'05), 2005, : 7 - 8
  • [10] Models of Language Processing
    Abel, Ihre Stefanie
    SPRACHE-STIMME-GEHOR, 2011, 35 (01): : 7 - 7