Consensus One-Step Multi-view Image Clustering Based on Low-Rank Tensor Learning

被引:0
|
作者
Li, Lin [1 ]
Zhou, Xiaojun [1 ]
Lu, Zhiqiang [1 ]
Li, Dongxiao [1 ]
Zhou, Xiaoxiao [1 ]
Song, Li [2 ]
Wu, Na [3 ]
机构
[1] MIGU Co Ltd, Beijing, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Image Commun & Network Engn, Shanghai, Peoples R China
[3] China Mobile Commun Res Inst, Artificial Intelligence & Intelligence Operat Ctr, Beijing, Peoples R China
关键词
multi-view clustering; low-rank tensor learning; consensus learning; labels learning;
D O I
10.1109/ICTC55111.2022.9778585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view subspace clustering aims to divide a set of multi-source data into several groups according to their underlying subspace structure. Despite superior clustering performance in various applications, most existing methods directly construct noisy affinity matrices by self-representation, and isolate the processes of affinity learning, multi-view information and clustering. Both factors may cause insufficient utilization of multi-view information, leading to unsatisfying clustering performance. In this paper, we propose a novel consensus one-step multi-view clustering method based on lowrank tensor learning to address these issues. Low-rank tensor learning, consensus learning and labels learning in a unified framework. Through the three steps of mutual negotiation, the final clustering label is directly obtained. Experimental results on four benchmark datasets demonstrate that our method outperforms other state-of-the-art methods.
引用
收藏
页码:117 / 121
页数:5
相关论文
共 50 条
  • [31] Multi-view Clustering Based on Low-rank Representation and Adaptive Graph Learning
    Huang, Yixuan
    Xiao, Qingjiang
    Du, Shiqiang
    Yu, Yao
    NEURAL PROCESSING LETTERS, 2022, 54 (01) : 265 - 283
  • [32] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Shuqin Wang
    Yongyong Chen
    Yigang Cen
    Linna Zhang
    Hengyou Wang
    Viacheslav Voronin
    Applied Intelligence, 2022, 52 : 14651 - 14664
  • [33] Multi-view low-rank dictionary learning for image classification
    Wu, Fei
    Jing, Xiao-Yuan
    You, Xinge
    Yue, Dong
    Hu, Ruimin
    Yang, Jing-Yu
    PATTERN RECOGNITION, 2016, 50 : 143 - 154
  • [34] One-step Low-Rank Representation for Clustering
    Fu, Zhiqiang
    Zhao, Yao
    Chang, Dongxia
    Wang, Yiming
    Wen, Jie
    Zhang, Xingxing
    Guo, Guodong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2220 - 2228
  • [35] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Wang, Hengyou
    Voronin, Viacheslav
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14651 - 14664
  • [36] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Guoqing Liu
    Hongwei Ge
    Shuzhi Su
    Shuangxi Wang
    Multimedia Tools and Applications, 2023, 82 : 38141 - 38164
  • [37] Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering
    Chen, Yongyong
    Wang, Shuqin
    Peng, Chong
    Hua, Zhongyun
    Zhou, Yicong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4022 - 4035
  • [38] Error-robust low-rank tensor approximation for multi-view clustering
    Wang, Shuqin
    Chen, Yongyong
    Jin, Yi
    Cen, Yigang
    Li, Yidong
    Zhang, Linna
    KNOWLEDGE-BASED SYSTEMS, 2021, 215
  • [39] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38141 - 38164
  • [40] Consensus graph and spectral representation for one-step multi-view kernel based clustering
    El Hajjar, S.
    Dornaika, F.
    Abdallah, F.
    Barrena, N.
    KNOWLEDGE-BASED SYSTEMS, 2022, 241