Van der Waals supercritical fluid: Exact formulas for special lines

被引:58
|
作者
Brazhkin, V. V. [1 ]
Ryzhov, V. N.
机构
[1] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 08期
基金
俄罗斯科学基金会;
关键词
GRUNEISEN PARAMETER; EQUATION; STATE;
D O I
10.1063/1.3627231
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the framework of the van der Waals model, analytical expressions for the locus of extrema (ridges) for heat capacity, thermal expansion coefficient, compressibility, density fluctuation, and sound velocity in the supercritical region have been obtained. It was found that the ridges for different thermodynamic values virtually merge into single Widom line only at T < 1.07T(c), P < 1.25P(c) and become smeared at T < 2T(c), P < 5P(c), where T-c and P-c are the critical temperature and pressure. The behavior of the Batschinski lines and the pseudo-Gruneisen parameter gamma of a van der Waals fluid were analyzed. In the critical point, the van der Waals fluid has gamma = 8/3, corresponding to a soft sphere particle system with exponent n = 14. (C) 2011 American Institute of Physics. [doi:10.1063/1.3627231]
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Preface to Special Topic on Twisted van der Waals Heterostructures
    Zhang, Jun
    Wei, Zhongming
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (01)
  • [32] Preface to Special Topic on Twisted van der Waals Heterostructures
    Jun Zhang
    Zhongming Wei
    Journal of Semiconductors, 2023, 44 (01) : 19 - 20
  • [33] Inflation in terms of a viscous van der Waals coupled fluid
    Brevik, I.
    Obukhov, V. V.
    Timoshkin, A. V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (09)
  • [34] Global crossover equation of state of a van der Waals fluid
    Wyczalkowska, AK
    Anisimov, MA
    Sengers, JV
    FLUID PHASE EQUILIBRIA, 1999, 158 : 523 - 535
  • [35] RAREFACTION SHOCK POSSIBILITY IN AN EQUILIBRIUM VAN DER WAALS FLUID
    KAHL, GD
    MYLIN, DC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (05): : 820 - &
  • [36] Using computation to teach the properties of the van der Waals fluid
    Swendsen, Robert H.
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (10) : 776 - 781
  • [37] Discontinuous solutions to the Euler equations for a van der Waals fluid
    Zhang, Shu-Yi
    APPLIED MATHEMATICS LETTERS, 2007, 20 (02) : 170 - 176
  • [38] NUMERICAL STUDY OF PHASE TRANSITION IN VAN DER WAALS FLUID
    He, Qiaolin
    Liu, Chang
    Shi, Xiaoding
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4519 - 4540
  • [39] Inflationary universe in terms of a van der Waals viscous fluid
    Brevik, I.
    Elizalde, E.
    Odintsov, S. D.
    Timoshkin, A. V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (12)
  • [40] The stability of expanding reactive shocks in a van der Waals fluid
    Calvo-Rivera, A.
    Huete, C.
    Velikovich, A. L.
    PHYSICS OF FLUIDS, 2022, 34 (04)