On paratopological vector spaces

被引:17
|
作者
Alegre, C [1 ]
Romaguera, S [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
关键词
paratopological vector space; pseudoconvex; paratopological group; translation invariant quasi-metric; right-bounded; quasi-norm; continuous linear map; bicompletion;
D O I
10.1023/B:AMHU.0000003908.28255.22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that each first countable paratopological vector space X has a compatible translation invariant quasi-metric such that the open balls are convex whenever X is a pseudoconvex vector space. We introduce the notions of a right-bounded subset and of a right-precompact subset of a paratopological vector space X and prove that X is quasi-normable if and only if the origin has a convex and right-bounded neighborhood. Duality in this context is also discussed. Furthermore, it is shown that the bicompletion of any paratopological vector space (respectively, of any quasi-metric vector space) admits the structure of a paratopological vector space (respectively, of a quasi-metric vector space). Finally, paratopological vector spaces of finite dimension are considered.
引用
收藏
页码:237 / 261
页数:25
相关论文
共 50 条
  • [31] TOPOLOGICAL VECTOR SPACES
    LANDSBER.M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1965, 45 (04): : 265 - +
  • [32] Integration in vector spaces
    Stefánsson, GF
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (03) : 925 - 938
  • [33] Ordered vector spaces
    Hemasinha, Rohan
    Weaver, James R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 : 171 - 183
  • [34] α-Topological Vector Spaces
    Al-Hawary, Talal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1102 - 1107
  • [35] ON VALUATIONS OF VECTOR SPACES
    Irwan, Sri Efrinita
    Garminia, Hanni
    Astuti, Pudji
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2016, 38 (06): : 633 - 646
  • [36] SPACES OF VECTOR MEASURES
    KATSARAS, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 206 (MAY) : 313 - 328
  • [37] On the learnability of vector spaces
    Harizanov, VS
    Stephan, F
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2002, 2533 : 233 - 247
  • [38] AN EQUIVALENCE OF VECTOR SPACES
    许永华
    Science Bulletin, 1987, (01) : 1 - 4
  • [39] Prehomogeneous Vector Spaces
    Li, Wen-Wei
    ZETA INTEGRALS, SCHWARTZ SPACES AND LOCAL FUNCTIONAL EQUATIONS, 2018, 2228 : 75 - 92
  • [40] RATIONAL VECTOR SPACES
    EVERETT, CJ
    RYSER, HJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (09) : 809 - 809