Approximation Algorithm for the Distance-3 Independent Set Problem on Cubic Graphs

被引:8
|
作者
Eto, Hiroshi [1 ]
Ito, Takehiro [2 ,3 ]
Liu, Zhilong [4 ]
Miyano, Eiji [4 ]
机构
[1] Kyushu Univ, Fukuoka 8128581, Japan
[2] Tohoku Univ, Sendai, Miyagi 9808579, Japan
[3] JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[4] Kyushu Inst Technol, Fukuoka 8208502, Japan
关键词
MAXIMUM WEIGHT; COMPLEXITY;
D O I
10.1007/978-3-319-53925-6_18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For an integer d >= 2, a distance-d independent set of an unweighted graph G = (V, E) is a subset S subset of V of vertices such that for any pair of vertices u, v is an element of S, the number of edges in any path between u and v is at least d in G. Given an unweighted graph G, the goal of MAXIMUM DISTANCE-d INDEPENDENT SET problem (MaxDdIS) is to find a maximum-cardinality distance-d independent set of G. In this paper we focus on MaxD3IS on cubic (3-regular) graphs. For every fixed integer d >= 3, MaxDdIS is NP-hard even for planar bipartite graphs of maximum degree three. Furthermore, when d = 3, it is known that there exists no sigma-approximation algorithm for MaxD3IS oncubic graphs for constant sigma < 1.00105. On the other hand, the previously best approximation ratio known for MaxD3IS on cubic graphs is 2. In this paper, we improve the approximation ratio into 1.875 for MaxD3IS on cubic graphs.
引用
收藏
页码:228 / 240
页数:13
相关论文
共 50 条
  • [21] A 3-Approximation Algorithm for Maximum Independent Set of Rectangles
    Galvez, Waldo
    Khan, Arindam
    Mari, Mathieu
    Momke, Tobias
    Pittu, Madhusudhan Reddy
    Wiese, Andreas
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 894 - 905
  • [22] A self-stabilizing distributed algorithm for the 1-MIS problem under the distance-3 model
    Kakugawa, Hirotsugu
    Kamei, Sayaka
    Shibata, Masahiro
    Ooshita, Fukuhito
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (26):
  • [23] NP-Completeness of the Independent Dominating Set Problem in the Class of Cubic Planar Bipartite Graphs
    Loverov Y.A.
    Orlovich Y.L.
    Journal of Applied and Industrial Mathematics, 2020, 14 (02): : 353 - 368
  • [24] Efficient independent set approximation in unit disk graphs
    Das, Gautam K.
    da Fonseca, Guilherme D.
    Jallu, Ramesh K.
    DISCRETE APPLIED MATHEMATICS, 2020, 280 : 63 - 70
  • [25] The maximum independent set problem in planar graphs
    Alekseev, Vladimir E.
    Lozin, Vadim
    Malyshev, Dmitriy
    Milanic, Martin
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2008, PROCEEDINGS, 2008, 5162 : 96 - +
  • [26] On the complexity of the independent set problem in triangle graphs
    Orlovich, Yury
    Blazewicz, Jacek
    Dolgui, Alexandre
    Finke, Gerd
    Gordon, Valery
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1670 - 1680
  • [27] A fast approximation algorithm for the maximum 2-packing set problem on planar graphs
    Joel Antonio Trejo-Sánchez
    Francisco A. Madera-Ramírez
    José Alberto Fernández-Zepeda
    José Luis López-Martínez
    Alejandro Flores-Lamas
    Optimization Letters, 2023, 17 : 1435 - 1454
  • [28] A fast approximation algorithm for the maximum 2-packing set problem on planar graphs
    Trejo-Sanchez, Joel Antonio
    Madera-Ramirez, Francisco A.
    Alberto Fernandez-Zepeda, Jose
    Luis Lopez-Martinez, Jose
    Flores-Lamas, Alejandro
    OPTIMIZATION LETTERS, 2023, 17 (06) : 1435 - 1454
  • [29] An optimal parallel algorithm for the perfect dominating set problem on distance-hereditary graphs
    Hsieh, SY
    Chen, GH
    Ho, CW
    ADVANCES IN COMPUTING SCIENCE-ASIAN' 98, 1998, 1538 : 113 - 124
  • [30] A 2-approximation algorithm for the vertex cover P4 problem in cubic graphs
    Li, Yuchao
    Tu, Jianhua
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (10) : 2103 - 2108