Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid-Base Pairs that are Reactive Towards the C-H Bond Activation of Methane

被引:181
|
作者
Wischert, Raphael [1 ,2 ]
Coperet, Christophe [1 ]
Delbecq, Francoise [2 ]
Sautet, Philippe [2 ]
机构
[1] Univ Lyon, CNRS, Inst Chim Lyon, CPE Lyon,C2P2, F-69616 Villeurbanne, France
[2] Univ Lyon, Inst Chim Lyon, CNRS, Ecole Normale Super Lyon, F-69342 Lyon 07, France
关键词
alumina; C-H bond activation; density functional calculations; Lewis acid-base pairs; methane; GAMMA-ALUMINA; CATALYTIC ALUMINAS; EXCHANGE-REACTION; HYDROXYL-GROUPS; SURFACES; SITES; DIFFRACTION; CHEMISTRY; DEUTERIUM; ENERGY;
D O I
10.1002/anie.201006794
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A low OH coverage, resulting from pretreatment at 700°C, generates metastable three-coordinate AlIII sites and reactive (Al III,O) Lewis acid-base pairs on γ-alumina. Water plays a dual role by increasing the basicity of oxygen atoms without affecting the Lewis acidity of the AlIII sites and by stabilizing the metastable (110) termination, where these sites exist. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3202 / 3205
页数:4
相关论文
共 36 条
  • [21] Insights into the synergistic role of metal-lattice oxygen site pairs in four-centered C-H bond activation of methane: the case of CuO
    Varghese, Jithin John
    Trinh, Quang Thang
    Mushrif, Samir H.
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (11) : 3984 - 3996
  • [22] C-H Bond Functionalization via Hydride Transfer: Lewis Acid Catalyzed Alkylation Reactions by Direct Intramolecular Coupling of sp3 C-H Bonds and Reactive Alkenyl Oxocarbenium Intermediates
    McQuaid, Kevin M.
    Sames, Dalibor
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (02) : 402 - +
  • [23] C-H bond functionalization via hydride transfer: Lewis acid catalyzed alkylation reactions by direct interamolecular coupling of sp3 C-H bonds and reactive alkenyl oxocarbenium intermediates
    McQuaid, Kevin M.
    Sames, Dalibor
    Journal of the American Chemical Society, 2009, 131 (02): : 402 - 403
  • [24] Tandem C-F and C-H Bond Activation in Fluoroolefins Promoted by a Bis(diethylphosphino)methane-Bridged Diiridium Complex: Role of Water in the Activation Processes
    Slaney, Michael E.
    Ferguson, Michael J.
    McDonald, Robert
    Cowie, Martin
    ORGANOMETALLICS, 2012, 31 (04) : 1384 - 1396
  • [25] Efficient Conversion of Ethanol to 1-Butanol over Adjacent Acid-Base Dual Sites via Enhanced C-H Activation
    Lu, Bing
    Ma, Shuangxiu
    Liang, Shipan
    Wang, Zhe
    Liu, Yali
    Mao, Shanjun
    Ban, Heng
    Wang, Lihua
    Wang, Yong
    ACS CATALYSIS, 2023, 13 (07) : 4866 - 4872
  • [26] A COMPUTER SIMULATION STUDY ON LEWIS ACID-BASE INTERACTIONS AND COOPERATIVE C-H•••O WEAK HYDROGEN BONDING IN VARIOUS CO2 COMPLEXES
    Zhang, Xingmei
    Han, Xiaolong
    Xu, Wenhao
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2011, 10 (04): : 483 - 508
  • [27] Theoretical studies for the Supercritical CO2 solubility of organophosphorous molecules:: Lewis acid-base interactions and C-H•••O weak hydrogen bonding
    Kim, Kyung Hyun
    Kim, Yongho
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2007, 28 (12): : 2454 - 2458
  • [28] A reaction for sp3-sp3 C-C bond formation via cooperation of Lewis acid-promoted/Rh-catalyzed C-H bond activation
    Shi, L
    Tu, YQ
    Wang, M
    Zhang, FM
    Fan, CA
    Zhao, YM
    Xia, WJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (31) : 10836 - 10837
  • [29] Palladium-catalyzed/Lewis acid-promoted alkene dimerization and cross-coupling with alcohols via C-H bond activation
    Jiang, Yi-Jun
    Tu, Yong-Qiang
    Zhang, En
    Zhang, Shu-Yu
    Cao, Ke
    Shi, Lei
    ADVANCED SYNTHESIS & CATALYSIS, 2008, 350 (04) : 552 - 556
  • [30] Low-Temperature Conversion of Methane to Methanol on CeOx/Cu2O Catalysts: Water Controlled Activation of the C-H Bond
    Zuo, Zhijun
    Ramirez, Pedro J.
    Senanayake, Sanjaya D.
    Liu, Ping
    Rodriguez, Jose A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) : 13810 - 13813