Hyperspherical Harmonics Expansion on Lagrange Meshes for Bosonic Systems in One Dimension

被引:10
|
作者
Timofeyuk, N. K. [1 ]
Baye, D. [2 ]
机构
[1] Univ Surrey, Phys Dept, Guildford GU2 7XH, Surrey, England
[2] Univ Libre Bruxelles, Phys Quant & Phys Nucl Theor & Phys Math, CP 229, B-1050 Brussels, Belgium
基金
英国科学技术设施理事会;
关键词
PARTICLES;
D O I
10.1007/s00601-017-1318-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A one-dimensional system of bosons interacting with contact and single-Gaussian forces is studied with an expansion in hyperspherical harmonics. The hyperradial potentials are calculated using the link between the hyperspherical harmonics and the single-particle harmonic-oscillator basis while the coupled hyperradial equations are solved with the Lagrange-mesh method. Extensions of this method are proposed to achieve good convergence with small numbers of mesh points for any truncation of hypermomentum. The convergence with hypermomentum strongly depends on the range of the two-body forces: it is very good for large ranges but deteriorates as the range decreases, being the worst for the contact interaction. In all cases, the lowest-order energy is within 4.5% of the exact solution and shows the correct cubic asymptotic behaviour at large boson numbers. Details of the convergence studies are presented for 3, 5, 20 and 100 bosons. A special treatment for three bosons was found to be necessary. For single-Gaussian interactions, the convergence rate improves with increasing boson number, similar to what happens in the case of three-dimensional systems of bosons.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Hyperspherical harmonics for polyatomic systems: Basis set for kinematic rotations
    Aquilanti, V
    Beddoni, A
    Lombardi, A
    Littlejohn, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 89 (04) : 277 - 291
  • [22] Hyperspherical harmonics for polyatomic systems: basis set for collective motions
    V. Aquilanti
    A. Lombardi
    R. G. Littlejohn
    Theoretical Chemistry Accounts, 2004, 111 : 400 - 406
  • [23] Hyperspherical harmonics for polyatomic systems: basis set for collective motions
    Aquilanti, V
    Lombardi, A
    Littlejohn, RG
    THEORETICAL CHEMISTRY ACCOUNTS, 2004, 111 (2-6) : 400 - 406
  • [24] Numerical generation of hyperspherical harmonics for tetra-atomic systems
    Lepetit, Bruno
    Wang, Desheng
    Kuppermann, Aron
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (13):
  • [25] Solution of Faddeev integral equations in configuration space using the hyperspherical harmonics expansion method
    Kovalchuk, Valery I.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2014, 23 (11)
  • [26] Analytical Derivation of Row-Orthonormal Hyperspherical Harmonics for Triatomic Systems
    Wang, Desheng
    Kuppermann, Aron
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (52): : 15384 - 15410
  • [27] TRINUCLEON SYSTEM WITH REID SOFT-CORE POTENTIAL BY HYPERSPHERICAL HARMONICS EXPANSION METHOD
    BHATTACHARYYA, S
    DAS, TK
    PRAMANA-JOURNAL OF PHYSICS, 1995, 44 (02): : 183 - 200
  • [28] Three-body systems with Lagrange-mesh techniques in hyperspherical coordinates
    Descouvemont, P
    Daniel, C
    Baye, D
    PHYSICAL REVIEW C, 2003, 67 (04):
  • [29] Hyperspherical harmonics for tetraatomic systems. 2. The weak interaction region
    Kuppermann, A
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (41): : 8894 - 8904
  • [30] A 3D shape descriptor: 4D hyperspherical harmonics "An exploration into the fourth dimension"
    Bonvallet, Bryan
    Griffin, Nikolla
    Li, Jia
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON GRAPHICS AND VISUALIZATION IN ENGINEERING, 2007, : 113 - +