Regulation of bacterial type II restriction-modification (R-M) systems

被引:0
|
作者
Wesserling, Martyna [1 ]
机构
[1] Gdanski Uniwersytet Med, Katedra Biochem Klin, Zaklad Med Mol, PL-80211 Gdansk, Poland
来源
POSTEPY MIKROBIOLOGII | 2015年 / 54卷 / 01期
关键词
C protein; restriction-modification systems; regulation of expression; CITROBACTER SP RFL231; DNA METHYLTRANSFERASE; GENE-EXPRESSION; STRUCTURAL ORGANIZATION; CONTROLLER PROTEINS; HOST-CELL; ENDONUCLEASE; TRANSCRIPTION; C.CSP231I; SEQUENCES;
D O I
暂无
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Type II restriction-modification (R-M) systems encode two separate enzymes: a restriction endonuclease (R) and a DNA methyltransferase (M). The action of the DNA sequence-specific methyltransferase protects the host DNA from cleavage by an associated restriction enzyme. The function of type II restriction-modification system regulation is generally assumed to be prevention of bacterial cell auto-restriction. The R and M genes must be regulated in such a way that the cell's own DNA is fully protected before restriction endonuclease activity appears. There a variety of control mechanisms that ensure the correct temporal expression of R-M genes. Unfortunately, the regulation mechanisms have not been well explored thus far. The understanding of the expression regulation of R-M genes is important and may influence the direction of research on new therapeutic methods.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [21] Bacterial Autoimmunity Due to a Restriction-Modification System
    Pleska, Maros
    Qian, Long
    Okura, Reiko
    Bergmiller, Tobias
    Wakamoto, Yuichi
    Kussell, Edo
    Guet, Calin C.
    CURRENT BIOLOGY, 2016, 26 (03) : 404 - 409
  • [22] Dissection of the type II restriction-modification and CRISPR systems of the cyanobacterium Arthrospira sp PCC 9108
    Perera, Julian
    Navarro-Llorens, Maria
    Blanco-Rivero, Amaya
    Guevara, Govinda
    Cruz Aparicio, Maria
    NEW BIOTECHNOLOGY, 2016, 33 : S171 - S171
  • [23] Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems
    Jeltsch, A
    Pingoud, A
    JOURNAL OF MOLECULAR EVOLUTION, 1996, 42 (02) : 91 - 96
  • [24] Phenotypic and genotypic variation in methylases involved in type II restriction-modification systems in Helicobacter pylori
    Takata, T
    Aras, R
    Tavakoli, D
    Ando, T
    Olivares, AZ
    Blaser, MJ
    NUCLEIC ACIDS RESEARCH, 2002, 30 (11) : 2444 - 2452
  • [25] A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes
    Bower, Edward K. M.
    Cooper, Laurie P.
    Roberts, Gareth A.
    White, John H.
    Luyten, Yvette
    Morgan, Richard D.
    Dryden, David T. F.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (17) : 9067 - 9080
  • [26] CLONED RESTRICTION-MODIFICATION SYSTEMS - A REVIEW
    WILSON, GG
    GENE, 1988, 74 (01) : 281 - 289
  • [27] Structural Insights into the Assembly and Shape of Type III Restriction-Modification (R-M) EcoP15I Complex by Small-Angle X-ray Scattering
    Gupta, Yogesh K.
    Yang, Lin
    Chan, Siu-Hong
    Samuelson, James C.
    Xu, Shuang-yong
    Aggarwal, Aneel K.
    JOURNAL OF MOLECULAR BIOLOGY, 2012, 420 (4-5) : 261 - 268
  • [28] A Survey of Archaeal Restriction-Modification Systems
    Anton, Brian P.
    Roberts, Richard J.
    MICROORGANISMS, 2023, 11 (10)
  • [29] Transcription regulation of the EcoRV restriction-modification system
    Semenova, E
    Minakhin, L
    Bogdanova, E
    Nagornykh, M
    Vasilov, A
    Heyduk, T
    Solonin, A
    Zakharova, M
    Severinov, K
    NUCLEIC ACIDS RESEARCH, 2005, 33 (21) : 6942 - 6951
  • [30] Statistical analysis of complete bacterial genomes: Avoidance of palindromes and restriction-modification systems
    Panina, EM
    Mironov, AA
    Gelfand, MS
    MOLECULAR BIOLOGY, 2000, 34 (02) : 215 - 221