Partial identification in the statistical matching problem

被引:3
|
作者
Ahfock, Daniel [1 ]
Pyne, Saumyadipta [2 ,3 ]
Lee, Sharon X. [1 ]
McLachlan, Geoffrey J. [1 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] IIPH Hyderabad, Publ Hlth Fdn India, Hyderabad, Telangana, India
[3] CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad, Andhra Pradesh, India
基金
澳大利亚研究理事会;
关键词
Data integration; Missing data; Positive-definite matrix completion; Statistical matching; FILE CONCATENATION; ADJUSTED WEIGHTS; INFERENCE; CONVERGENCE;
D O I
10.1016/j.csda.2016.06.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The statistical matching problem involves the integration of multiple datasets where some variables are not observed jointly. This missing data pattern leaves most statistical models unidentifiable. Statistical inference is still possible when operating under the framework of partially identified models, where the goal is to bound the parameters rather than to estimate them precisely. In many matching problems, developing feasible bounds on the parameters is equivalent to finding the set of positive-definite completions of a partially specified covariance matrix. Existing methods for characterising the set of possible completions do not extend to high-dimensional problems. A Gibbs sampler to draw from the set of possible completions is proposed. The variation in the observed samples gives an estimate of the feasible region of the parameters. The Gibbs sampler extends easily to high-dimensional statistical matching problems. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:79 / 90
页数:12
相关论文
共 50 条
  • [31] The use of uncertainty to choose matching variables in statistical matching
    D'Orazio, Marcello
    Di Zio, Marco
    Scanu, Mauro
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 90 : 433 - 440
  • [32] STATISTICAL PATTERN-MATCHING
    RYALL, TG
    SANDOR, J
    PATTERN RECOGNITION LETTERS, 1989, 9 (03) : 163 - 168
  • [33] Uncertainty Analysis in Statistical Matching
    Conti, Pier Luigi
    Marella, Daniela
    Scanu, Mauro
    JOURNAL OF OFFICIAL STATISTICS, 2012, 28 (01) : 69 - 88
  • [34] Statistical matching for conservation science
    Schleicher, Judith
    Eklund, Johanna
    Barnes, Megan D.
    Geldmann, Jonas
    Oldekop, Johan A.
    Jones, Julia P. G.
    CONSERVATION BIOLOGY, 2020, 34 (03) : 538 - 549
  • [35] Statistical Matching of Income and Consumption
    Donatiello, Gabriella
    D'Orazio, Marcello
    Frattarola, Doriana
    Rizzi, Antony
    Scanu, Mauro
    Spaziani, Mattia
    INTERNATIONAL JOURNAL OF ECONOMIC SCIENCES, 2014, 3 (03): : 50 - 65
  • [36] Statistical modeling under partial identification: Distinguishing three types of identification regions in regression analysis with interval data
    Schollmeyer, Georg
    Augustin, Thomas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 56 : 224 - 248
  • [37] Partial hue-matching
    Logvinenko, Alexander D.
    Beattie, Lesley L.
    JOURNAL OF VISION, 2011, 11 (08): : 6
  • [38] Partial Matching in the Space of Varifolds
    Antonsanti, Pierre-Louis
    Glaunes, Joan
    Benseghir, Thomas
    Jugnon, Vincent
    Kaltenmark, Irene
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021, 2021, 12729 : 123 - 135
  • [39] Partial matching of Bangla words
    Jahan, Farhana
    Al Ameen, Mahmudul Faisal
    Abdullah-Al-Mamun, Khondaker
    ICECE 2006: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, 2006, : 189 - +
  • [40] Matching games with partial information
    Laureti, P
    Zhang, YC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 324 (1-2) : 49 - 65