Lifting 2D Object Detection to 3D: Geometric Approach in Bird-Eye-View

被引:0
|
作者
Zhuravlev, Dmitriy [1 ]
机构
[1] T Shevchenko Natl Univ, UA-01601 Kiev, Ukraine
关键词
3D object detection; Tracking;
D O I
10.1007/978-3-031-09076-9_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection is fundamental for computer vision applications. Although motion is essentially linked with the orientation of the object, the trajectory of the object is not fully utilized in modern 3D object detectors. This paper proposes a method for object 3D bounding box estimation based on 2D tracking and Inverse Perspective Mapping. Unlike other solutions utilizing deep learning techniques for orientation estimation, the proposed method uses geometric constraints and object movements. Which causes the execution speed and errors of 3D localization to remain comparable to a pure 2D tracker.
引用
收藏
页码:211 / 225
页数:15
相关论文
共 50 条
  • [41] 3D Object Detection and Instance Segmentation from 3D Range and 2D Color Images
    Shen, Xiaoke
    Stamos, Ioannis
    SENSORS, 2021, 21 (04) : 1 - 29
  • [42] 3D Bird's-Eye-View Instance Segmentation
    Elich, Cathrin
    Engelmann, Francis
    Kontogianni, Theodora
    Leibe, Bastian
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 48 - 61
  • [43] RGB-LiDAR fusion for accurate 2D and 3D object detection
    Mousa-Pasandi, Morteza
    Liu, Tianran
    Massoud, Yahya
    Laganiere, Robert
    MACHINE VISION AND APPLICATIONS, 2023, 34 (05)
  • [44] Improving Object Detection in 2D Images Using a 3D World Model
    Viggh, Herbert E. M.
    Cho, Peter L.
    Armstrong-Crews, Nicholas L.
    Nam, Myra
    Shah, Danelle C.
    Brown, Geoffrey E.
    MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2014, 2014, 9121
  • [45] RGB-LiDAR fusion for accurate 2D and 3D object detection
    Morteza Mousa-Pasandi
    Tianran Liu
    Yahya Massoud
    Robert Laganière
    Machine Vision and Applications, 2023, 34
  • [46] Weakly supervised object detection with 2D and 3D regression neural networks
    Dubost, Florian
    Adams, Hieab
    Yilmaz, Pinar
    Bortsova, Gerda
    van Tulder, Gijs
    Ikram, M. Arfan
    Niessen, Wiro
    Vernooij, Meike W.
    de Bruijne, Marleen
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [47] Underwater salient object detection by combining 2D and 3D visual features
    Chen, Zhe
    Gao, Hongmin
    Zhang, Zhen
    Zhou, Helen
    Wang, Xun
    Tian, Yan
    NEUROCOMPUTING, 2020, 391 (391) : 249 - 259
  • [48] Object Detection in Multi-view 3D Reconstruction Using Semantic and Geometric Context
    Weinshall, D.
    Golbert, A.
    CMRT13 - CITY MODELS, ROADS AND TRAFFIC 2013, 2013, II-3/W3 : 97 - 102
  • [49] A Heterogeneous Approach for 3D Object Detection
    Lü Z.
    Yao Z.
    Jia Y.
    Bao Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (12): : 2748 - 2759
  • [50] Geometric invariants for 2D/3D face recognition
    Riccio, Daniel
    Dugelay, Jean-Luc
    PATTERN RECOGNITION LETTERS, 2007, 28 (14) : 1907 - 1914