Prediction of building electricity usage using Gaussian Process Regression

被引:89
|
作者
Zeng, Aaron [1 ]
Ho, Hodde [2 ]
Yu, Yao [3 ]
机构
[1] United Technol Corp, Shanghai, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian, Liaoning, Peoples R China
[3] North Dakota State Univ, Dept Construct Management & Engn, Fargo, ND 58105 USA
关键词
Energy use prediction; Machine learning; Electricity consumption; Gaussian process regression; Online building energy; FAULT-DETECTION ANALYSIS; MACHINE LEARNING-MODELS; ENERGY-CONSUMPTION; CLASSIFICATION;
D O I
10.1016/j.jobe.2019.101054
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The prediction of building energy use is the basis for smart building operation, which optimizes building performance through control and low-energy strategy. For reducing computation complexity and improving calculation accuracy, a comparative study of online electricity data predictions for different types of buildings was conducted. This study is also intended to assess the capability and accuracy of the supervised machine learning methods, with which the kernel algorithms of predictions were developed. Specifically, in this study, large-scale real data collected from the building energy management system were used in the online energy consumption forecasting, which is specially designed for optimized control, real-time fault detection, diagnosis and abnormality alarms. Firstly, the characteristics of building energy profiles and data reliability were addressed. Mathematical algorithms were introduced and their previous applications in building energy usage prediction were summarized, including the evaluation criteria that are effective for energy use predictions in buildings. The reliability and efficiency of the proposed algorithms were then demonstrated through the comparison between the monitored actual data and the predicted results. It is found that Gaussian Process Regression (GPR) can give acceptable predictions on the energy consumption of office buildings with an equilibrium of data prediction accuracy with the average deviations of below 15% and low computation time. Additionally, the statistical evaluation criteria proposed by ASHRAE can also be satisfied. For hotels and shopping malls where complex functions were applied in these buildings, their accuracy are not better or even the same as those of simplified models, due to the significant effects of the factors involving occupant's activities and schedules as well as data reliability on building energy usage. Our result revealed that GPR is a reliable method and can still generate highly accurate predictions when a large data set with a small time interval and complex energy use patterns obtained from real building measurements rather than simulated data are involved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Prediction of duration and construction cost of road tunnels using Gaussian process regression
    Mahmoodzadeh, Arsalan
    Mohammadi, Mokhtar
    Abdulhamid, Sazan Nariman
    Ibrahim, Hawkar Hashim
    Ali, Hunar Farid Hama
    Nejati, Hamid Reza
    Rashidi, Shima
    GEOMECHANICS AND ENGINEERING, 2022, 28 (01) : 65 - 75
  • [22] An Intelligent Machine Monitoring System for Energy Prediction Using a Gaussian Process Regression
    Bhinge, Raunak
    Biswas, Nishant
    Dornfeld, David
    Park, Jinkyoo
    Law, Kincho H.
    Helu, Moneer
    Rachuri, Sudarsan
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 978 - 986
  • [23] Deck motion prediction using neural kernel network Gaussian process regression
    Qin, Peng
    Luo, Jianjun
    Ma, Weihua
    Wu, Liming
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2024, 42 (03): : 377 - 385
  • [24] Gaussian Process Regression for a PMV Prediction Model using Environmental Monitoring Data
    Yoon, Young Ran
    Moon, Hyeun Jun
    Kim, Sun Ho
    Kim, Jeong Won
    PROCEEDINGS OF BUILDING SIMULATION 2019: 16TH CONFERENCE OF IBPSA, 2020, : 2540 - 2545
  • [25] Performance prediction and Bayesian optimization of screw compressors using Gaussian Process Regression
    Kumar, Abhishek
    Patil, Sumit
    Kovacevic, Ahmed
    Ponnusami, Sathiskumar Anusuya
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [26] Lateral Force Prediction Using Gaussian Process Regression for Intelligent Tire Systems
    Barbosa, Bruno Henrique Groenner
    Xu, Nan
    Askari, Hassan
    Khajepour, Amir
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5332 - 5343
  • [27] Scalable Gaussian Process Regression for Prediction of Material Properties
    Belisle, Eve
    Huang, Zi
    Gheribi, Aimen
    DATABASES THEORY AND APPLICATIONS, ADC 2014, 2014, 8506 : 38 - 49
  • [28] Gaussian Process Regression for WDM System Performance Prediction
    Wass, Jesper
    Thrane, Jakob
    Piels, Molly
    Jones, Rasmus
    Zibar, Darko
    2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2017,
  • [29] Prediction Performance After Learning in Gaussian Process Regression
    Wagberg, Johan
    Zachariah, Dave
    Schon, Thomas B.
    Stoica, Petre
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 1264 - 1272
  • [30] Guaranteed Coverage Prediction Intervals With Gaussian Process Regression
    Papadopoulos, Harris
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9072 - 9083