Manipulating Crystallization for Simultaneous Improvement of Impact Strength and Heat Resistance of Plasticized Poly(l-lactic acid) and Poly(butylene succinate) Blends

被引:10
|
作者
Kajornprai, Todsapol [1 ]
Suttiruengwong, Supakij [2 ]
Sirisinha, Kalyanee [1 ]
机构
[1] Mahidol Univ, Fac Sci, Dept Chem, Bangkok 10400, Thailand
[2] Silpakorn Univ, Fac Engn & Ind Technol, Dept Mat Sci & Engn, Sanamchandra Palace Campus, Amphoe Muang 73000, Nakhon Pathom, Thailand
关键词
poly(lactic acid); poly(butylene succinate); impact strength; annealing; crystallization; heat resistance; TOUGHENING MODIFICATION; MECHANICAL-PROPERTIES; PLLA/PBS BLENDS; TOUGHNESS; BEHAVIOR; MORPHOLOGY; PLA; CRYSTALLINITY; COPOLYMERS; POLYMERS;
D O I
10.3390/polym13183066
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Crystalline morphology and phase structure play a decisive role in determining the properties of polymer blends. In this research, biodegradable blends of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS) have been prepared by melt-extrusion and molded into specimens with rapid cooling. The crystalline morphology (e.g., crystallinity, crystal type and perfection) is manipulated by annealing the molded products from solid-state within a short time. This work emphasizes on the effects of annealing conditions on crystallization and properties of the blends, especially impact toughness and thermal stability. Phase-separation morphology with PBS dispersed particles smaller than 1 mu m is created in the blends. The blend properties are successfully dictated by controlling the crystalline morphology. Increasing crystallinity alone does not ensure the enhancement of impact toughness. A great improvement of impact strength and heat resistance is achieved when the PLLA/PBS (80/20) blends are plasticized with 5% medium molecular-weight poly(ethylene glycol), and simultaneously heat-treated at a temperature close to the cold-crystallization of PLLA. The plasticized blend annealed at 92 degrees C for only 10 min exhibits ten-fold impact strength over the starting PLLA and slightly higher heat distortion temperature. The microscopic study demonstrates the fracture mechanism changes from crazing to shear yielding in this annealed sample.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Impact of Ionic Liquids on the (bio)degradability of Poly(butylene succinate)/Poly(lactic acid) blends
    Delamarche, Emma
    Mattlet, Agnes
    Livi, Sebastien
    Gerard, Jean-Francois
    Bayard, Remy
    Massardier, Valerie
    FRONTIERS IN MATERIALS, 2022, 9
  • [22] A comparative study of glycolic acid and L-lactic acid on modification of poly(butylene succinate)
    Tian, Weihua
    Tu, Zhu
    Liu, Lipeng
    Wei, Zhiyong
    POLYMER DEGRADATION AND STABILITY, 2022, 206
  • [23] A comparative study of glycolic acid and L-lactic acid on modification of poly(butylene succinate)
    Tian, Weihua
    Tu, Zhu
    Liu, Lipeng
    Wei, Zhiyong
    POLYMER DEGRADATION AND STABILITY, 2022, 206
  • [24] Effects of Poly(ε-caprolactone) on the Properties of Poly(lactic acid)/Poly(butylene succinate) Blends
    Gu T.
    Zhu D.
    Zheng Q.
    Yu J.
    Lu S.
    Lu, Shengjun (sjlu@gzu.edu.cn), 2018, Sichuan University (34): : 42 - 47
  • [25] Effect of chain extender on morphology and tensile properties of poly(L-lactic acid)/poly(butylene succinate-co-L-lactate) blends
    Nishida, Masakazu
    Liu, Xiangyu
    Furuya, Shun
    Nishida, Masahiro
    Takayama, Tetsuo
    Todo, Mitsugu
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [26] Crystallization Behavior and Mechanical Properties of Crosslinked Plasticized Poly(L-lactic acid)
    Jia, Zhiyuan
    Zhang, Kunyu
    Tan, Juanjuan
    Han, Changyu
    Dong, Lisong
    Yang, Yuming
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 111 (03) : 1530 - 1539
  • [27] Effect of heat treatment on mechanical and fracture properties of poly (lactic acid)/Poly (butylene succinate) blends
    Kobayashi, Satoshi
    Kogo, Yasuo
    Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73 (05): : 589 - 594
  • [28] Study on Crystallization of Poly (lactic acid)/Poly (propylene succinate) Blends
    Yueagyen, Panadda
    Lertworasirikul, Amornrat
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (03) : 9609 - 9614
  • [29] Crystallization and heat resistance properties of poly(glycolic acid) reinforced poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Deng, Huiwen
    Yu, Jinshuo
    Liu, Chengkai
    Zhao, Yan
    Pan, Hongwei
    Ni, Hongzhe
    Wang, Zhe
    Bian, Junjia
    Han, Lijing
    Zhang, Huiliang
    THERMOCHIMICA ACTA, 2024, 731
  • [30] A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks
    Zeng, Jian-Bing
    Li, Yi-Dong
    Zhu, Qun-Ying
    Yang, Ke-Ke
    Wang, Xiu-Li
    Wang, Yu-Zhong
    POLYMER, 2009, 50 (05) : 1178 - 1186