Monte Carlo simulation of β-γ coincidence system using plastic scintillators in 4π geometry

被引:2
|
作者
Dias, M. S.
Piuvezam-Filho, H.
Baccarelli, A. M.
Takeda, M. N.
Koskinas, M. F.
机构
[1] IPEN CNEN SP, CNEN, BR-05508000 Sao Paulo, Brazil
[2] PUC SP, Dept Fis, BR-01303050 Sao Paulo, Brazil
[3] Univ Santo Amaro, UNISA, BR-04829300 Sao Paulo, Brazil
关键词
Monte Carlo; coincidence; standardisation;
D O I
10.1016/j.nima.2007.05.183
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4 pi beta(PS)-gamma coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4 pi geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to Co-60 and Ba-133 radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4 pi beta(PC)-gamma coincidence system. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:380 / 383
页数:4
相关论文
共 50 条
  • [11] MONTE-CARLO CALCULATIONS OF EFFICIENCIES FOR PHOTON INTERACTIONS IN PLASTIC SCINTILLATORS
    BONZI, EV
    MAINARDI, RT
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1992, 72 (3-4): : 477 - 480
  • [12] MONTE-CARLO CALCULATION OF RADIATION ENERGY ABSORBED IN PLASTIC SCINTILLATORS
    MAINARDI, RT
    BONZI, EV
    RADIATION PHYSICS AND CHEMISTRY, 1995, 45 (05) : 691 - 693
  • [13] Improvements in the Monte Carlo code for simulating 4πβ(PC)-γ coincidence system measurements
    Dias, M. S.
    Takeda, M. N.
    Toledo, F.
    Brancaccio, F.
    Tongu, M. L. O.
    Koskinas, M. F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 698 : 177 - 184
  • [14] MONTE-CARLO SIMULATION OF PLASTIC CRYSTALS
    PRANDL, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1981, 156 (1-2): : 94 - 95
  • [15] Monte Carlo simulations of the response of a plastic scintillator and an HPGe spectrometer in coincidence
    Jokovic, D. R.
    Dragic, A.
    Udovicic, V.
    Banjanac, R.
    Puzovic, J.
    Anicin, I.
    APPLIED RADIATION AND ISOTOPES, 2009, 67 (05) : 719 - 722
  • [16] Monte Carlo study of plastic rod scintillators for use in industrial computed tomography
    Taheri, A.
    Askari, M.
    JOURNAL OF INSTRUMENTATION, 2022, 17 (01)
  • [17] System uncertainty modelling using Monte Carlo simulation
    Coughlan, L
    Basil, M
    Cox, P
    MEASUREMENT & CONTROL, 2000, 33 (03): : 78 - 81
  • [18] DETERMINATION OF TRUE COINCIDENCE CORRECTION FACTORS USING MONTE-CARLO SIMULATION TECHNIQUES
    Chionis, Dionysios A.
    Savva, Marilia I.
    Karfopoulos, Konstantinos L.
    Anagnostakis, Marios J.
    NUCLEAR TECHNOLOGY & RADIATION PROTECTION, 2014, 29 : S8 - S13
  • [19] Variance Reduction Techniques for Monte Carlo Simulation of Coincidence Circuits
    E. A. Tsvetkov
    Bulletin of the Lebedev Physics Institute, 2021, 48 : 232 - 235
  • [20] Variance Reduction Techniques for Monte Carlo Simulation of Coincidence Circuits
    Tsvetkov, E. A.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2021, 48 (08) : 232 - 235