Near-invariant subspaces for matrix groups are nearly invariant

被引:0
|
作者
Mastnak, Mitja [1 ]
Omladic, Matjaz [2 ,3 ]
Radjavi, Heydar [4 ]
机构
[1] St Marys Univ, Dept Math, Halifax, NS B3H 3C3, Canada
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Jozef Stefan Inst, Ljubljana, Slovenia
[4] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Group; Semigroup; Reducibility; Invariant subspaces;
D O I
10.1016/j.laa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a semigroup of invertible matrices. It is shown that if P is an idempotent matrix of rank and co-rank at least two such that the rank of (1 - P)SP is never more than one for S in S (the range of the kind of P is said to be near-invariant), then S has an invariant subspace within one dimension of the range of P (the kind of range is said to be nearly invariant). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [31] Sampling in Unitary Invariant Subspaces Associated to LCA Groups
    A. G. García
    M. A. Hernández-Medina
    G. Pérez-Villalón
    Results in Mathematics, 2017, 72 : 1725 - 1745
  • [32] Wavelet subspaces invariant under groups of translation operators
    Biswaranjan Behera
    Shobha Madan
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2003, 113 : 171 - 178
  • [33] Sampling in Unitary Invariant Subspaces Associated to LCA Groups
    Garcia, A. G.
    Hernandez-Medina, M. A.
    Perez-Villalon, G.
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1725 - 1745
  • [34] Wavelet subspaces invariant under groups of translation operators
    Behera, B
    Madan, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (02): : 171 - 178
  • [35] FINITE-DIMENSIONAL TOEPLITZ KERNELS AND NEARLY-INVARIANT SUBSPACES
    Camara, M. C.
    Partington, J. R.
    JOURNAL OF OPERATOR THEORY, 2016, 75 (01) : 75 - 90
  • [36] Using the Matrix Sign Function to Compute Invariant Subspaces
    SIAM J Matrix Anal Appl, 1 (205):
  • [37] On the matrix sign function method for the computation of invariant subspaces
    Byers, R
    He, CY
    Mehrmann, V
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 1996, : 71 - 76
  • [38] Backward Shift and Nearly Invariant Subspaces of Fock-type Spaces
    Aleman, Alexandru
    Baranov, Anton
    Belov, Yurii
    Hedenmalm, Haakan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7390 - 7419
  • [39] Using the matrix sign function to compute invariant subspaces
    Bai, ZJ
    Demmel, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 205 - 225