The minimum perfect matching in pseudo-dimension 0 < q < 1

被引:1
|
作者
Larsson, Joel [1 ]
机构
[1] Lund Univ, Dept Stat, Lund, Sweden
来源
COMBINATORICS PROBABILITY & COMPUTING | 2021年 / 30卷 / 03期
关键词
EXPECTED VALUE; ASSIGNMENT; CONJECTURE; PROOF;
D O I
10.1017/S0963548320000425
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is known that for K-n,K- n equipped with i.i.d. exp (1) edge costs, the minimum total cost of a perfect matching converges to zeta(2) = pi(2)/6 in probability. Similar convergence has been established for all edge cost distributions of pseudo-dimension q >= 1. In this paper we extend those results to all real positive q, confirming the Mezard-Parisi conjecture in the last remaining applicable case.
引用
收藏
页码:374 / 397
页数:24
相关论文
共 50 条
  • [21] On Copson's inequalities for 0 < p < 1
    Gao, Peng
    Zhao, HuaYu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [22] TheSpacesbpwith0<p<1
    HU Zhangjian LIU TaishunDepartment of Mathematics University of Science and Technology of China Hefei ChinaDepartment of Mathematics Huzhou Teachers College Huzhou China
    数学季刊, 2004, (04) : 331 - 337
  • [23] Sharp estimates of the embedding constants for Besov spaces bp,q,s, 0 < p < 1
    Edmunds, David E.
    Evans, W. Desmond
    Karadzhov, Gyorgi E.
    REVISTA MATEMATICA COMPLUTENSE, 2007, 20 (02): : 445 - 462
  • [24] EstimatesofthreeclassicalsummationsonthespacesFpα,q(R~n)(0<p≤1)
    GAO Guilian
    ZHONG Yong
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2014, 29 (03) : 329 - 338
  • [25] Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0<q<1
    Wang, Heping
    JOURNAL OF APPROXIMATION THEORY, 2007, 145 (02) : 182 - 195
  • [26] The "Full Muntz Theorem" in Lp [0,1] for 0 < p < ∞
    Erdélyi, T
    Johnson, WB
    JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1): : 145 - 172
  • [27] Concerning the energy class εp for 0 < p < 1
    Ahag, Per
    Czyz, Rafal
    Hiep, Pham Hoang
    ANNALES POLONICI MATHEMATICI, 2007, 91 (2-3) : 119 - 130
  • [28] Embedding subspaces of Lp into lpN, 0 < p < 1
    Schechtman, G
    Zvavitch, A
    MATHEMATISCHE NACHRICHTEN, 2001, 227 : 133 - 142
  • [29] The Lp Minkowski problem for polytopes for 0 < p < 1
    Zhu, Guangxian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (04) : 1070 - 1094
  • [30] The MUNICS project:: Galaxy assembly at 0 < z < 1
    Drory, N
    Bender, R
    Feulner, G
    Hill, GJ
    Hopp, U
    Maraston, C
    Snigula, J
    Multiwavelength Mapping of Galaxy Formation and Evolution, 2005, : 251 - 256