The minimum perfect matching in pseudo-dimension 0 < q < 1

被引:1
|
作者
Larsson, Joel [1 ]
机构
[1] Lund Univ, Dept Stat, Lund, Sweden
来源
COMBINATORICS PROBABILITY & COMPUTING | 2021年 / 30卷 / 03期
关键词
EXPECTED VALUE; ASSIGNMENT; CONJECTURE; PROOF;
D O I
10.1017/S0963548320000425
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is known that for K-n,K- n equipped with i.i.d. exp (1) edge costs, the minimum total cost of a perfect matching converges to zeta(2) = pi(2)/6 in probability. Similar convergence has been established for all edge cost distributions of pseudo-dimension q >= 1. In this paper we extend those results to all real positive q, confirming the Mezard-Parisi conjecture in the last remaining applicable case.
引用
收藏
页码:374 / 397
页数:24
相关论文
共 50 条