Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion

被引:0
|
作者
Dreisigmeyer, David W. [1 ]
Young, Peter M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Lagrangian mechanics; Nonconservative systems; Volterra series; Fractional derivatives; FRACTIONAL DERIVATIVES; VARIATIONAL-PRINCIPLES; SYSTEMS;
D O I
10.1007/s10701-015-9892-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work builds on the Volterra series formalism presented in Dreisigmeyer and Young (J Phys A 36: 8297, 2003) to model nonconservative systems. Here we treat Lagrangians and actions as 'time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle.
引用
收藏
页码:661 / 672
页数:12
相关论文
共 50 条
  • [31] Lagrangian equations of motion of particles and photons in a Schwarzschild field
    Ritus, V. I.
    PHYSICS-USPEKHI, 2015, 58 (11) : 1118 - 1123
  • [32] RELATIVISTIC LAGRANGIAN EQUATIONS OF MOTION WITH CONSTRAINTS - CHECK ON CONTINUUM
    CAVALLERI, G
    SPINELLI, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1977, 39 (01): : 87 - 92
  • [33] Coherent post-Newtonian Lagrangian equations of motion
    Li, Dan
    Wang, Yu
    Deng, Chen
    Wu, Xin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (05):
  • [34] Quantization of theories with non-Lagrangian equations of motion
    Gitman D.M.
    Kupriyanov V.G.
    Journal of Mathematical Sciences, 2007, 141 (4) : 1399 - 1406
  • [35] Coherent post-Newtonian Lagrangian equations of motion
    Dan Li
    Yu Wang
    Chen Deng
    Xin Wu
    The European Physical Journal Plus, 135
  • [37] AN ALTERNATE TRANSITION FROM THE LAGRANGIAN OF A SATELLITE TO EQUATIONS OF MOTION
    Marandi, S. R.
    Modi, V. J.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 45 (04): : 333 - 386
  • [38] Equations of motion in general relativity and quantum mechanics
    O'Hara, Paul
    IARD 2010: THE 7TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2011, 330
  • [39] A note on the equations of motion in nonrelativistic quantum mechanics
    Powell, FC
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 : 291 - 294
  • [40] A PURELY QUARK LAGRANGIAN FROM QCD
    Fariborz, Amir H.
    Jora, Renata
    ROMANIAN REPORTS IN PHYSICS, 2017, 69 (04)