Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion

被引:0
|
作者
Dreisigmeyer, David W. [1 ]
Young, Peter M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Lagrangian mechanics; Nonconservative systems; Volterra series; Fractional derivatives; FRACTIONAL DERIVATIVES; VARIATIONAL-PRINCIPLES; SYSTEMS;
D O I
10.1007/s10701-015-9892-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work builds on the Volterra series formalism presented in Dreisigmeyer and Young (J Phys A 36: 8297, 2003) to model nonconservative systems. Here we treat Lagrangians and actions as 'time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle.
引用
收藏
页码:661 / 672
页数:12
相关论文
共 50 条
  • [1] Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion
    David W. Dreisigmeyer
    Peter M. Young
    Foundations of Physics, 2015, 45 : 661 - 672
  • [2] Nonconservative Lagrangian and Hamiltonian mechanics
    Riewe, F
    PHYSICAL REVIEW E, 1996, 53 (02): : 1890 - 1899
  • [3] 2ND-ORDER DIFFERENTIAL-EQUATIONS AND NONCONSERVATIVE LAGRANGIAN MECHANICS
    DELEON, M
    RODRIGUES, PR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15): : 5393 - 5396
  • [4] Nonconservative Lagrangian mechanics: a generalized function approach
    Dreisigmeyer, DW
    Young, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30): : 8297 - 8310
  • [5] Equations of motion for general constrained systems in Lagrangian mechanics
    Udwadia, Firdaus E.
    Schutte, Aaron D.
    ACTA MECHANICA, 2010, 213 (1-2) : 111 - 129
  • [6] Equations of motion for general constrained systems in Lagrangian mechanics
    Firdaus E. Udwadia
    Aaron D. Schutte
    Acta Mechanica, 2010, 213 : 111 - 129
  • [8] Integrating factors and conservation theorems of Lagrangian equations for nonconservative mechanical system in generalized classical mechanics
    Qiao Yong-Fen
    Zhao Shu-Hong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (01) : 43 - 45
  • [9] Some Geometrical Aspects of Fractional Nonconservative Autonomous Lagrangian Mechanics
    El-Nabulsi, Rami Ahmad
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 5 (S06): : 50 - 64
  • [10] Some geometrical aspects of fractional nonconservative autonomous lagrangian mechanics
    El-Nabulsi, Rami Ahmad
    Int. J. Appl. Math. Stat., 1600, SO6 (50-64):