Multi-model robust control of depth of hypnosis

被引:23
|
作者
Sadati, Nasser [1 ]
Hosseinzadeh, Mehdi [2 ]
Dumont, Guy A. [3 ]
机构
[1] Sharif Univ Technol, Dept Elect Engn, Tehran 113659363, Iran
[2] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran 14395515, Iran
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
关键词
Automated drug delivery; Anesthesia; Pharmacokinetic-pharmacodynamic modeling; Depth of hypnosis; Multi-model robust control scheme; CLOSED-LOOP CONTROL; PROPOFOL ANESTHESIA; BISPECTRAL ANALYSIS; INDEX;
D O I
10.1016/j.bspc.2017.10.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a multi-model robust control scheme to control the depth of hypnosis during intravenous administration of propofol. The objective of the proposed control scheme is to provide an adequate drug administration regime for propofol to avoid overdosing and underdosing of patients. The proposed scheme is designed to withstand the patient's inherent drug response variability, to achieve good output disturbance and sensor noise rejection, and to attain a good set point response. A comprehensive simulation study of 44 patients is presented to assess the performance of the proposed control scheme. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 50 条
  • [41] Multi-model predictive control of nonlinear systems
    Zeng, Jing
    Xue, Ding-Yu
    Yuan, De-Cheng
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2009, 30 (01): : 26 - 29
  • [42] Multi-Model Adaptive Control for CACC Applications
    Navas, Francisco
    Milanes, Vicente
    Flores, Carlos
    Nashashibi, Fawzi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) : 1206 - 1216
  • [43] Multi-model control in ball mill process
    Tian, Pei
    Ma, Ping
    Jiang, Yiheng
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2000, 24 (13): : 41 - 44
  • [44] Robust Multi-Model Fitting Using Density and Preference Analysis
    Tiwari, Lokender
    Anand, Saket
    Mittal, Sushil
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 308 - 323
  • [45] Reducing Multi-model Biases for Robust Visual Question Answering
    Zhang F.
    Li Y.
    Li X.
    Xu J.
    Chen Y.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60 (01): : 23 - 33
  • [46] CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus
    Kluger, Florian
    Brachmann, Eric
    Ackermann, Hanno
    Rother, Carsten
    Yang, Michael Ying
    Rosenhahn, Bodo
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4633 - 4642
  • [47] Robust maximum principle for multi-model LQ-problem
    Poznyak, AS
    Duncan, TE
    Pasik-Duncan, B
    Boltyanski, VG
    INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (15) : 1170 - 1177
  • [48] Robust switching strategy of turnover box multi-model systems
    Zhang S.
    Xiang R.
    Zhang M.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (02): : 744 - 764
  • [49] Robust climate change research: a review on multi-model analysis
    Duan, Hongbo
    Zhang, Gupeng
    Wang, Shouyang
    Fan, Ying
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (03):
  • [50] A robust multi-model predictive controller for distributed parameter systems
    Garcia, Miriam R.
    Vilas, Carlos
    Santos, Lino O.
    Alonso, Antonio A.
    JOURNAL OF PROCESS CONTROL, 2012, 22 (01) : 60 - 71