Deep learning models comparison for tissue classification using optical coherence tomography images: toward smart laser osteotomy

被引:6
|
作者
Bayhaqi, Yakub A. [1 ]
Hamidi, Arsham [1 ]
Canbaz, Ferda [1 ]
Navarini, Alexander A. [2 ]
Cattin, Philippe C. [3 ]
Zam, Azhar [1 ]
机构
[1] Univ Basel, Dept Biomed Engn, Biomed Laser & Opt Grp BLOG, CH-4123 Allschwil, Switzerland
[2] Univ Basel, Dept Biomed Engn, Digital Dermatol Grp, CH-4123 Allschwil, Switzerland
[3] Univ Basel, Dept Biomed Engn, Ctr Med Image Anal & Nav CLAN, CH-4123 Allschwil, Switzerland
来源
OSA CONTINUUM | 2021年 / 4卷 / 09期
关键词
DIFFUSE-REFLECTANCE SPECTROSCOPY; YAG LASER; ATHEROSCLEROTIC PLAQUES; RAMAN-SPECTROSCOPY; FEEDBACK-CONTROL; JOINT TISSUE; DIFFERENTIATION; SURGERY; DISCRIMINATION; ABLATION;
D O I
10.1364/OSAC.435184
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compared deep learning models as a basis for OCT image-based feedback system for smart laser osteotomy. A total of 10,000 OCT image patches were acquired ex-vivo from pig's bone, bone marrow, fat, muscle, and skin tissues. We trained neural network models using three different input features (the texture, intensity profile, and attenuation map). The comparison shows that the DenseNet161 model with combined input has the highest average accuracy of 94.85% and F1-score of 94.67%. Furthermore, the results show that our method improved the accuracy of the models and the feasibility of identifying tissue types from OCT images. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2510 / 2526
页数:17
相关论文
共 50 条
  • [31] Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning
    Viqar, Maryam
    Sahin, Erdem
    Stoykova, Elena
    Madjarova, Violeta
    SENSORS, 2025, 25 (01)
  • [32] Automatic microchannel detection using deep learning in intravascular optical coherence tomography images
    Lee, Juhwan
    Kim, Justin N.
    Pereira, Gabriel T. R.
    Gharaibeh, Yazan
    Kolluru, Chaitanya
    Zimin, Vladislav N.
    Dallan, Luis A. P.
    Motairek, Issam K.
    Hoori, Ammar
    Guagliumi, Giulio
    Bezerra, Hiram G.
    Wilson, David L.
    MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [33] Epiretinal Membrane Detection in Optical Coherence Tomography Retinal Images Using Deep Learning
    Parra-Mora, Esther
    Cazanas-Gordon, Alex
    Proenca, Rui
    Cruz, Luis A. da Silva
    IEEE ACCESS, 2021, 9 : 99201 - 99219
  • [34] Classification of optical coherence tomography images using a capsule network
    Takumasa Tsuji
    Yuta Hirose
    Kohei Fujimori
    Takuya Hirose
    Asuka Oyama
    Yusuke Saikawa
    Tatsuya Mimura
    Kenshiro Shiraishi
    Takenori Kobayashi
    Atsushi Mizota
    Jun’ichi Kotoku
    BMC Ophthalmology, 20
  • [35] Classification of optical coherence tomography images using a capsule network
    Tsuji, Takumasa
    Hirose, Yuta
    Fujimori, Kohei
    Hirose, Takuya
    Oyama, Asuka
    Saikawa, Yusuke
    Mimura, Tatsuya
    Shiraishi, Kenshiro
    Kobayashi, Takenori
    Mizota, Atsushi
    Kotoku, Jun'ichi
    BMC OPHTHALMOLOGY, 2020, 20 (01)
  • [36] Performance evaluation of various deep learning based models for effective glaucoma evaluation using optical coherence tomography images
    Singh, Law Kumar
    Pooja
    Garg, Hitendra
    Khanna, Munish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (19) : 27737 - 27781
  • [37] Performance evaluation of various deep learning based models for effective glaucoma evaluation using optical coherence tomography images
    Law Kumar Singh
    Hitendra Pooja
    Munish Garg
    Multimedia Tools and Applications, 2022, 81 : 27737 - 27781
  • [38] Deep learning for quality assessment of optical coherence tomography angiography images
    Wang, Jay C.
    Dhodapkar, Rahul
    Li, Emily
    Nwanyanwu, Kristen Harris
    Adelman, Ron A.
    Krishnaswamy, Smita
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [39] Deep learning for quality assessment of optical coherence tomography angiography images
    Dhodapkar, Rahul M.
    Li, Emily
    Nwanyanwu, Kristen
    Adelman, Ron
    Krishnaswamy, Smita
    Wang, Jay C.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Facilitating deep learning through preprocessing of optical coherence tomography images
    Li, Anfei
    Winebrake, James P.
    Kovacs, Kyle
    BMC OPHTHALMOLOGY, 2023, 23 (01)