Deep learning models comparison for tissue classification using optical coherence tomography images: toward smart laser osteotomy

被引:6
|
作者
Bayhaqi, Yakub A. [1 ]
Hamidi, Arsham [1 ]
Canbaz, Ferda [1 ]
Navarini, Alexander A. [2 ]
Cattin, Philippe C. [3 ]
Zam, Azhar [1 ]
机构
[1] Univ Basel, Dept Biomed Engn, Biomed Laser & Opt Grp BLOG, CH-4123 Allschwil, Switzerland
[2] Univ Basel, Dept Biomed Engn, Digital Dermatol Grp, CH-4123 Allschwil, Switzerland
[3] Univ Basel, Dept Biomed Engn, Ctr Med Image Anal & Nav CLAN, CH-4123 Allschwil, Switzerland
来源
OSA CONTINUUM | 2021年 / 4卷 / 09期
关键词
DIFFUSE-REFLECTANCE SPECTROSCOPY; YAG LASER; ATHEROSCLEROTIC PLAQUES; RAMAN-SPECTROSCOPY; FEEDBACK-CONTROL; JOINT TISSUE; DIFFERENTIATION; SURGERY; DISCRIMINATION; ABLATION;
D O I
10.1364/OSAC.435184
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compared deep learning models as a basis for OCT image-based feedback system for smart laser osteotomy. A total of 10,000 OCT image patches were acquired ex-vivo from pig's bone, bone marrow, fat, muscle, and skin tissues. We trained neural network models using three different input features (the texture, intensity profile, and attenuation map). The comparison shows that the DenseNet161 model with combined input has the highest average accuracy of 94.85% and F1-score of 94.67%. Furthermore, the results show that our method improved the accuracy of the models and the feasibility of identifying tissue types from OCT images. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2510 / 2526
页数:17
相关论文
共 50 条
  • [1] Deep Learning Classification on Optical Coherence Tomography Retina Images
    Shih, Frank Y.
    Patel, Himanshu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (08)
  • [2] Classification of Material Type from Optical Coherence Tomography Images Using Deep Learning
    Sabuncu, Metin
    Ozdemir, Hakan
    INTERNATIONAL JOURNAL OF OPTICS, 2021, 2021
  • [3] Automated and Interpretable Glaucoma Classification Using Deep Learning and Optical Coherence Tomography Images
    Rasel, Rafiul Karim
    Wu, Fengze
    Chiariglione, Marion
    Gao, Xiaoyi Raymond
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [4] Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy
    Bayhaqi, Yakub A.
    Hamidi, Arsham
    Canbaz, Ferda
    Navarini, Alexander A.
    Cattin, Philippe C.
    Zam, Azhar
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2615 - 2628
  • [5] Classification of pachychoroid on optical coherence tomography using deep learning
    Nam Yeo Kang
    Ho Ra
    Kook Lee
    Jun Hyuk Lee
    Won Ki Lee
    Jiwon Baek
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259 : 1803 - 1809
  • [6] Classification of pachychoroid on optical coherence tomography using deep learning
    Kang, Nam Yeo
    Ra, Ho
    Lee, Kook
    Lee, Jun Hyuk
    Lee, Won Ki
    Baek, Jiwon
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2021, 259 (07) : 1803 - 1809
  • [7] Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning
    Shah, Mital
    Ledo, Ana Roomans
    Rittscher, Jens
    ACTA OPHTHALMOLOGICA, 2020, 98 (06) : E715 - E721
  • [8] Fast and Efficient Method for Optical Coherence Tomography Images Classification Using Deep Learning Approach
    Ara, Rouhollah Kian
    Matiolanski, Andrzej
    Dziech, Andrzej
    Baran, Remigiusz
    Domin, Pawel
    Wieczorkiewicz, Adam
    SENSORS, 2022, 22 (13)
  • [9] Classification of Optical Coherence Tomography Images Using Deep Neural Networks
    Kotoku, J.
    Tsuji, T.
    Hirose, Y.
    Fujimori, K.
    Hirose, T.
    Oyama, A.
    Saikawa, Y.
    Mimura, T.
    Shiraishi, K.
    Kobayashi, T.
    Mizota, A.
    MEDICAL PHYSICS, 2020, 47 (06) : E391 - E391
  • [10] Enhanced Deep Learning Model for Classification of Retinal Optical Coherence Tomography Images
    Hassan, Esraa
    Elmougy, Samir
    Ibraheem, Mai R.
    Hossain, M. Shamim
    AlMutib, Khalid
    Ghoneim, Ahmed
    AlQahtani, Salman A.
    Talaat, Fatma M.
    SENSORS, 2023, 23 (12)