Robustness Analysis of Fuzzy Computation Tree Logic

被引:0
|
作者
Li, Li [1 ]
Yuan, Hong-Juan [1 ]
Pan, Hai-Yu [1 ,2 ]
机构
[1] Taizhou Univ, Coll Comp Sci & Technol, Taizhou 225300, Peoples R China
[2] Shaanxi Normal Univ, Coll Comp Sci, Xian 710062, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Temporal logic; Fuzzy computation tree logic; Model checking; Complete residuated lattices; Heyting algebra; MODEL CHECKING;
D O I
10.1007/978-3-319-46206-6_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy computation tree logic is an extension of classical temporal logic computation tree logic, which is used to specify the properties of systems with uncertain information content. This paper investigates the robustness of fuzzy computation tree logic. Robustness results are proved based on complete Heyting algebra and standard Lukasiewicz algebra.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [31] Model checking quantified computation tree logic
    Rensink, Arend
    CONCUR 2006 - CONCURRENCY THEORY, PROCEEDINGS, 2006, 4137 : 110 - 125
  • [32] Natural deduction calculus for computation tree logic
    Bolotov, Alexander
    Grigoriev, Oleg
    Shangin, Vasilyi
    IEEE JOHN VINCENT ATANASOFF 2006 INTERNATIONAL SYMPOSIUM ON MODERN COMPUTING, PROCEEDINGS, 2006, : 175 - +
  • [33] Min-max computation tree logic
    Dasgupta, P
    Chakrabarti, PP
    Deka, JK
    Sankaranarayanan, S
    ARTIFICIAL INTELLIGENCE, 2001, 127 (01) : 137 - 162
  • [34] Fuzzy logic system for fuzzy event tree computing
    Dumitrescu, M
    Ulmeanu, AP
    Munteanu, T
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 125 - 129
  • [35] TLTk: A Toolbox for Parallel Robustness Computation of Temporal Logic Specifications
    Cralley, Joseph
    Spantidi, Ourania
    Hoxha, Bardh
    Fainekos, Georgios
    RUNTIME VERIFICATION (RV 2020), 2020, 12399 : 404 - 416
  • [36] Robustness of fuzzy logic control for an uncertain dynamic system
    Yi, SY
    Chung, MJ
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (02) : 216 - 225
  • [37] Robustness of an optimized fuzzy logic controller to plant variations
    Zadeh, Hossein S.
    Wharington, John
    Drack, Lorenz
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 2855 - +
  • [38] Computation Tree Regular Logic for Genetic Regulatory Networks
    Mateescu, Radu
    Monteiro, Pedro T.
    Dumas, Estelle
    de Jong, Hidde
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, PROCEEDINGS, 2008, 5311 : 48 - 63
  • [39] Model Checking for the Full Hybrid Computation Tree Logic
    Kernberger, Daniel
    Lange, Martin
    PROCEEDINGS 23RD INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING - TIME 2016, 2016, : 31 - 40
  • [40] PARACONSISTENT NEGATION AND CLASSICAL NEGATION IN COMPUTATION TREE LOGIC
    Kamide, Norihiro
    Kaneiwa, Ken
    ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, : 464 - 469