Robustness Analysis of Fuzzy Computation Tree Logic

被引:0
|
作者
Li, Li [1 ]
Yuan, Hong-Juan [1 ]
Pan, Hai-Yu [1 ,2 ]
机构
[1] Taizhou Univ, Coll Comp Sci & Technol, Taizhou 225300, Peoples R China
[2] Shaanxi Normal Univ, Coll Comp Sci, Xian 710062, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Temporal logic; Fuzzy computation tree logic; Model checking; Complete residuated lattices; Heyting algebra; MODEL CHECKING;
D O I
10.1007/978-3-319-46206-6_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy computation tree logic is an extension of classical temporal logic computation tree logic, which is used to specify the properties of systems with uncertain information content. This paper investigates the robustness of fuzzy computation tree logic. Robustness results are proved based on complete Heyting algebra and standard Lukasiewicz algebra.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [1] Model checking fuzzy computation tree logic
    Pan, Haiyu
    Li, Yongming
    Cao, Yongzhi
    Ma, Zhanyou
    FUZZY SETS AND SYSTEMS, 2015, 262 : 60 - 77
  • [2] Incremental model checking for fuzzy computation tree logic
    Pan, Haiyu
    Zhou, Jie
    Lin, Yuming
    Cao, Yongzhi
    FUZZY SETS AND SYSTEMS, 2025, 500
  • [3] Model Checking Fuzzy Computation Tree Logic Based on Fuzzy Decision Processes with Cost
    Ma, Zhanyou
    Li, Zhaokai
    Li, Weijun
    Gao, Yingnan
    Li, Xia
    ENTROPY, 2022, 24 (09)
  • [4] Computation Tree Logic Model Checking for Nondeterminisitc Fuzzy Kripke Structure
    Fan Y.-H.
    Li Y.-M.
    Pan H.-Y.
    Li, Yong-Ming (liyongm@snnu.edu.cn), 2018, Chinese Institute of Electronics (46): : 152 - 159
  • [5] Fault tree analysis based on fuzzy logic
    He, Li-Ping
    Huang, Hong-Zhong
    Zuo, Ming J.
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2007 PROCEEDINGS, 2006, : 77 - +
  • [6] Analysis of DRAM Vulnerability Using Computation Tree Logic
    Liu, Yuxin
    Zhu, Ziyuan
    Zhang, Yusha
    Tong, Zhongkai
    Cai, Wenjing
    Meng, Dan
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022,
  • [7] Robust computation tree logic
    Nayak, Satya Prakash
    Neider, Daniel
    Roy, Rajarshi
    Zimmermann, Martin
    INNOVATIONS IN SYSTEMS AND SOFTWARE ENGINEERING, 2024,
  • [8] Paraconsistent Computation Tree Logic
    Kaneiwa, Ken
    Kamide, Norihiro
    NEW GENERATION COMPUTING, 2011, 29 (04) : 391 - 408
  • [9] On probabilistic computation tree logic
    Ciesinski, R
    Grösser, M
    VALIDATION OF STOCHASTIC SYSTEMS: A GUIDE TO CURRENT RESEARCH, 2004, 2925 : 147 - 188
  • [10] Quantified computation tree logic
    Patthak, AC
    Bhattacharya, I
    Dasgupta, A
    Dasgupta, P
    Chakrabarti, PP
    INFORMATION PROCESSING LETTERS, 2002, 82 (03) : 123 - 129