Gated Value Network for Multilabel Classification

被引:2
|
作者
Hou, Yimin [1 ]
Wan, Sen [2 ]
Bao, Feng [2 ]
Ren, Zhiquan [2 ]
Dong, Yunfeng [1 ]
Dai, Qionghai [2 ]
Deng, Yue [3 ,4 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 102206, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Beihang Univ, Sch Astronaut, Beijing 102206, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Logic gates; Optimization; Task analysis; Tagging; Machine learning; Learning systems; Visualization; Feedforward predict; gated value network (GVN); multilabel classification (MLC);
D O I
10.1109/TNNLS.2020.3019804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a gated value network (GVN) for general multilabel classification (MLC) tasks. GVN was motivated by deep value network (DVN) that directly exploits the "compatibility" metric as the learning pursuit for MLC. Meanwhile, it further improves traditional DVN on twofold. First, GVN relaxes the complex variable optimization steps in DVN inference by incorporating a feedforward predictor for straightforward multilabel prediction. Second, GVN also introduces the gating mechanism to block confounding factors from the input data that allows more precise compatibility evaluations for data and their potential multilabels. The whole GVN framework is trained in an end-to-end manner with policy gradient approaches. We show the effectiveness and generalization of GVN on diverse learning tasks, including document classification, audio tagging, and image attribute prediction.
引用
收藏
页码:4748 / 4754
页数:7
相关论文
共 50 条
  • [41] Dimensionality Reduction in Multilabel Classification with Neural Networks
    Mandziuk, Jacek
    Zychowski, Adam
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [42] Trading off Speed and Accuracy in Multilabel Classification
    Corani, Giorgio
    Antonucci, Alessandro
    Maua, Denis D.
    Gabaglio, Sandra
    PROBABILISTIC GRAPHICAL MODELS, 2014, 8754 : 145 - 159
  • [43] Hierarchical multilabel classification based on path evaluation
    Ramirez-Corona, Mallinali
    Enrique Sucar, L.
    Morales, Eduardo F.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 68 : 179 - 193
  • [44] HAIN: Multilabel Classification With Hierarchical Attention-Based Interaction Network for Multiturn Dialogue Texts
    Cao, Bin
    Wang, Kai
    Ma, Kui
    Fan, Jing
    Yan, Rui
    Xu, Yueshen
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (03) : 1514 - 1523
  • [45] Multiview Matrix Completion for Multilabel Image Classification
    Luo, Yong
    Liu, Tongliang
    Tao, Dacheng
    Xu, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (08) : 2355 - 2368
  • [46] Spatial and Structured SVM for Multilabel Image Classification
    Koda, Satoru
    Zeggada, Abdallah
    Melgani, Farid
    Nishii, Ryuei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5948 - 5960
  • [47] Multilabel classification of remote sensed satellite imagery
    Kumar, Ajay
    Abhishek, Kumar
    Singh, Amit Kumar
    Nerurkar, Pranav
    Chandane, Madhav
    Bhirud, Sunil
    Patel, Dhiren
    Busnel, Yann
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (07)
  • [48] Multilabel Classification With Multivariate Time Series Predictors
    Che, Yuezhang
    Zhu, Yunzhang
    Shen, Xiaotong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5696 - 5705
  • [49] Multilabel classification via calibrated label ranking
    Johannes Fürnkranz
    Eyke Hüllermeier
    Eneldo Loza Mencía
    Klaus Brinker
    Machine Learning, 2008, 73 : 133 - 153
  • [50] Fuzzy support vector machines for multilabel classification
    Abe, Shigeo
    PATTERN RECOGNITION, 2015, 48 (06) : 2110 - 2117