Gated Value Network for Multilabel Classification

被引:2
|
作者
Hou, Yimin [1 ]
Wan, Sen [2 ]
Bao, Feng [2 ]
Ren, Zhiquan [2 ]
Dong, Yunfeng [1 ]
Dai, Qionghai [2 ]
Deng, Yue [3 ,4 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 102206, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[3] Beihang Univ, Sch Astronaut, Beijing 102206, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Logic gates; Optimization; Task analysis; Tagging; Machine learning; Learning systems; Visualization; Feedforward predict; gated value network (GVN); multilabel classification (MLC);
D O I
10.1109/TNNLS.2020.3019804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a gated value network (GVN) for general multilabel classification (MLC) tasks. GVN was motivated by deep value network (DVN) that directly exploits the "compatibility" metric as the learning pursuit for MLC. Meanwhile, it further improves traditional DVN on twofold. First, GVN relaxes the complex variable optimization steps in DVN inference by incorporating a feedforward predictor for straightforward multilabel prediction. Second, GVN also introduces the gating mechanism to block confounding factors from the input data that allows more precise compatibility evaluations for data and their potential multilabels. The whole GVN framework is trained in an end-to-end manner with policy gradient approaches. We show the effectiveness and generalization of GVN on diverse learning tasks, including document classification, audio tagging, and image attribute prediction.
引用
收藏
页码:4748 / 4754
页数:7
相关论文
共 50 条
  • [1] Relation Network for Multilabel Aerial Image Classification
    Hua, Yuansheng
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4558 - 4572
  • [2] Collaborative Multilabel Classification
    Zhu, Yunzhang
    Shen, Xiaotong
    Jiang, Hui
    Wong, Wing Hung
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 913 - 924
  • [3] Consistent Multilabel Classification
    Koyejo, Oluwasanmi
    Natarajan, Nagarajan
    Ravikumar, Pradeep
    Dhillon, Inderjit S.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [4] Multilabel Consensus Classification
    Xie, Sihong
    Kong, Xiangnan
    Gao, Jing
    Fan, Wei
    Yu, Philip S.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 1241 - 1246
  • [5] Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification
    Cerri, Ricardo
    de Carvalho, Andre Carlos P. L. F.
    Freitas, Alex A.
    INTELLIGENT DATA ANALYSIS, 2011, 15 (06) : 861 - 887
  • [6] Multilabel Aerial Image Classification With a Concept Attention Graph Neural Network
    Lin, Dan
    Lin, Jianzhe
    Zhao, Liang
    Wang, Z. Jane
    Chen, Zhikui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Graph Neural Networks-Based Multilabel Classification of Citation Network
    Lachaud, Guillaume
    Conde-Cespedes, Patricia
    Trocan, Maria
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 : 128 - 140
  • [8] Multilabel Classification via Co-Evolutionary Multilabel Hypernetwork
    Sun, Kai Wei
    Lee, Chong Ho
    Wang, Jin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (09) : 2438 - 2451
  • [9] Neighbor selection for multilabel classification
    Liu, Huawen
    Wu, Xindong
    Zhang, Shichao
    NEUROCOMPUTING, 2016, 182 : 187 - 196
  • [10] Ensemble of Networks for Multilabel Classification
    Nanni, Loris
    Trambaiollo, Luca
    Brahnam, Sheryl
    Guo, Xiang
    Woolsey, Chancellor
    SIGNALS, 2022, 3 (04): : 911 - 931