Inhomogeneous burgers lattices

被引:1
|
作者
De Lillo, S [1 ]
Konotop, VV
机构
[1] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[2] Inst Nazl Fis Nucl, Sez Perugia, Perugia, Italy
[3] Univ Madeira, Dept Phys, P-9000 Praca Do Municipio, Funchal, Portugal
关键词
D O I
10.2991/jnmp.2001.8.Supplement.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study statistical properties of inhomogeneous Burgers lattices which are solved by the discrete Cole-Hopf transformation. Using exact solutions we investigate effect of various kinds of noise on the dynamics of solutions.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [1] Inhomogeneous Burgers Lattices
    S De Lillo
    V V Konotop
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 82 - 87
  • [2] INHOMOGENEOUS LATTICES
    SWINNERTONDYER, HPF
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (01): : 20 - 25
  • [3] Asymptotic solutions of the inhomogeneous Burgers equation
    Bednarik, M
    Konicek, P
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (01): : 91 - 98
  • [4] Successive Approximation for the Inhomogeneous Burgers Equation
    Mera, Azal
    Stepanenko, Vitaly A.
    Tarkhanov, Nikolai
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (04): : 519 - 531
  • [5] CRITICAL BEHAVIOUR OF INHOMOGENEOUS LATTICES
    WATSON, PG
    JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1969, 2 (06): : 948 - &
  • [6] Approximate analytical solution of the inhomogeneous Burgers equation
    Konícek, P
    Bednarík, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (04) : 413 - 421
  • [7] Generalized solutions of an inhomogeneous inviscid Burgers equation
    Satyanarayana Engu
    M. Manasa
    P. B. Venkatramana
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 188 - 206
  • [8] Generalized solutions of an inhomogeneous inviscid Burgers equation
    Engu, Satyanarayana
    Manasa, M.
    Venkatramana, P. B.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 188 - 206
  • [9] Inhomogeneous quantum antiferromagnetism on periodic lattices
    Jagannathan, A.
    Moessner, R.
    Wessel, Stefan
    PHYSICAL REVIEW B, 2006, 74 (18):
  • [10] Variational approach to the diffusion on inhomogeneous lattices
    Zaluska-Kotur, Magdalena A.
    APPLIED SURFACE SCIENCE, 2014, 304 : 122 - 126