Successive Approximation for the Inhomogeneous Burgers Equation

被引:0
|
作者
Mera, Azal [1 ]
Stepanenko, Vitaly A. [2 ]
Tarkhanov, Nikolai [3 ]
机构
[1] Univ Babylon, Babylon, Iraq
[2] Siberian Fed Univ, Inst Math & Comp Sci, Svobodny 79, Krasnoyarsk 660041, Russia
[3] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
Navier-Stokes equations; classical solution;
D O I
10.17516/1997-1397-2018-11-4-519-531
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inhomogeneous Burgers equation is a simple form of the Navier-Stokes equations. From the analytical point of view, the inhomogeneous form is poorly studied, the complete analytical solution depending closely on the form of the nonhomogeneous term.
引用
收藏
页码:519 / 531
页数:13
相关论文
共 50 条
  • [2] On the approximation of the stochastic Burgers equation
    Gugg, C
    Kielhöfer, H
    Niggemann, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) : 181 - 199
  • [3] On the Approximation of the Stochastic Burgers Equation
    Christoph Gugg
    Hansjörg Kielhöfer
    Michael Niggemann
    Communications in Mathematical Physics, 2002, 230 : 181 - 199
  • [4] Asymptotic solutions of the inhomogeneous Burgers equation
    Bednarik, M
    Konicek, P
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (01): : 91 - 98
  • [5] Approximate analytical solution of the inhomogeneous Burgers equation
    Konícek, P
    Bednarík, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (04) : 413 - 421
  • [6] Generalized solutions of an inhomogeneous inviscid Burgers equation
    Satyanarayana Engu
    M. Manasa
    P. B. Venkatramana
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 188 - 206
  • [7] Numerical Approximation of Fractional Burgers Equation
    Guesmia, A.
    Daili, N.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2010, 1 (02): : 77 - 90
  • [8] On numerical approximation of stochastic Burgers' equation
    Alabert, A
    Gyöngy, I
    FROM STOCHASTIC CALCULUS TO MATHEMATICAL FINANCE: THE SHIRYAEV FESTSCHRIFT, 2006, : 1 - +
  • [9] Generalized solutions of an inhomogeneous inviscid Burgers equation
    Engu, Satyanarayana
    Manasa, M.
    Venkatramana, P. B.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01): : 188 - 206
  • [10] Ulam stability of a successive approximation equation
    Baias, Alina Ramona
    Popa, Dorian
    Rasa, Ioan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)