Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM)

被引:115
|
作者
Wu, Yanyu [1 ,3 ]
Zhou, Shaoqi [1 ,2 ,3 ]
Qin, Fanghui [1 ,3 ]
Ye, Xiuya [1 ,3 ]
Zheng, Ke [1 ,3 ]
机构
[1] S China Univ Technol, Coll Environm Sci & Engn, Guangzhou Higher Educ Mega Ctr, Guangzhou 510006, Guangdong, Peoples R China
[2] S China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Peoples R China
[3] S China Univ Technol, Key Lab Environm Protect & Ecoremediat, Guangdong Regular Higher Educ Inst, Guangzhou Higher Educ Mega Ctr, Guangzhou 510006, Guangdong, Peoples R China
关键词
Landfill leachate; Fenton; Oxidation; Coagulation; Humic substances; Response surface methodology (RSM); DISSOLVED ORGANIC-MATTER; OPTIMIZATION; FRACTIONS; DOM;
D O I
10.1016/j.jhazmat.2010.04.052
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the Fenton process was found to be successful to treat landfill leachate rejected after reverses osmose treatment. Central composite design (CCD) and response surface method (RSM) were applied to evaluate and optimize the interactive effects of three operating variables, initial pH and dosages of H2O2 and Fe2+ on physical and oxidative performances of Fenton process. Six dependent parameters such as overall chemical oxygen demand (COD) removal, COD removals of oxidation and coagulation, mineralization, humic substances (HS) removal and sludge volume ratio (SVR) were either directly measured or calculated as responses. According to analysis of variances (ANOVA) results, six proposed models could be used to navigate the design space with high regression coefficient R-2 varied from 0.9489 to 0.9988. It was found that initial pH. H2O2 and Fe2+ dosage had significant effects on the overall COD removal, mineralization and HS removal due to their respective effects on the oxidation and coagulation removals. Synergies effect of oxidation and coagulation during Fenton process controlled the treatment. The visual search of overlaying critical response contours plot was demonstrated. The results indicated the optimum conditions to be 3.64 of initial pH, 100 mM of Fe2+ and 240 mM of H2O2 dosage, respectively. The experimental data and model predictions agreed well. The overall COD removal, COD removals of oxidation and coagulation, mineralization, HS removal and SVR of 71.81%, 46.22%. 25.80%, 63.81%, 91.53% and 3.50 ml/mM were demonstrated. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:456 / 465
页数:10
相关论文
共 50 条
  • [41] Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology
    Aziz, Shuokr Qarani
    Aziz, Hamidi Abdul
    Yusoff, Mohd Suffian
    Bashir, Mohammed J. K.
    JOURNAL OF HAZARDOUS MATERIALS, 2011, 189 (1-2) : 404 - 413
  • [42] Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology
    Aghamohammadi, Nasrin
    Aziz, Hamidi bin Abdul
    Isa, Mohamed Hasnain
    Zinatizadeh, Ali Akbar
    BIORESOURCE TECHNOLOGY, 2007, 98 (18) : 3570 - 3578
  • [43] Removal of Neutral Red Dye via Electro-Fenton Process: A Response Surface Methodology Modeling
    Masoud Ebratkhahan
    Samin Naghash Hamed
    Mahmoud Zarei
    Abbas Jafarizad
    Mohammad Rostamizadeh
    Electrocatalysis, 2021, 12 : 579 - 594
  • [44] Removal of Neutral Red Dye via Electro-Fenton Process: A Response Surface Methodology Modeling
    Ebratkhahan, Masoud
    Hamed, Samin Naghash
    Zarei, Mahmoud
    Jafarizad, Abbas
    Rostamizadeh, Mohammad
    ELECTROCATALYSIS, 2021, 12 (05) : 579 - 594
  • [45] OPTIMIZATION OF PROCESS PARAMETERS FOR REMOVAL OF Cr(VI) BY HYPNUM CUPRESSIFORME USING RESPONSE SURFACE METHODOLOGY (RSM)
    Ozkan, Esra
    Gurses, Ahmet
    Acikyildiz, Metin
    Gunes, Kubra
    FRESENIUS ENVIRONMENTAL BULLETIN, 2012, 21 (11B): : 3421 - 3423
  • [46] Optimization of COD Removal from Pharmaceutical Wastewater by Electrocoagulation process using Response Surface Methodology (RSM)
    Najeeb, Riham Gh.
    Abbar, Ali H.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2022, 65 (01): : 619 - 631
  • [47] Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM)
    Dargahi, Abdollah
    Mohammadi, Mitra
    Amirian, Farhad
    Karami, Amir
    Almasi, Ali
    DESALINATION AND WATER TREATMENT, 2017, 87 : 199 - 208
  • [48] Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique
    Mohajeri, Soraya
    Aziz, Hamidi Abdul
    Isa, Mohamed Hasnain
    Zahed, Mohammad Ali
    Adlan, Mohd. Nordin
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 176 (1-3) : 749 - 758
  • [49] Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system
    Ismail, Sherif
    Tawfik, Ahmed
    WATER SCIENCE AND TECHNOLOGY, 2016, 73 (07) : 1700 - 1708
  • [50] Optimization of the process variables for landfill leachate treatment using Fenton based advanced oxidation technique
    Mahtab, Mohd Salim
    Islam, Dar Tafazul
    Farooqi, Izharul Haq
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2021, 24 (02): : 428 - 435