On the numerical solutions for the fractional diffusion equation

被引:224
|
作者
Khader, M. M. [1 ]
机构
[1] Benha Univ, Dept Math, Fac Sci, Banha, Egypt
关键词
Finite difference method; Fractional diffusion equation; Chebyshev polynomials; Caputo derivative; FINITE-DIFFERENCE APPROXIMATIONS; FLOW;
D O I
10.1016/j.cnsns.2010.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional differential equations have recently been applied in various area of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional diffusion equation (FDE) is considered. The fractional derivative is described in the Caputo sense. The method is based upon Chebyshev approximations. The properties of Chebyshev polynomials are utilized to reduce FDE to a system of ordinary differential equations, which solved by the finite difference method. Numerical simulation of FDE is presented and the results are compared with the exact solution and other methods. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2535 / 2542
页数:8
相关论文
共 50 条
  • [21] Analytical and numerical solutions of time fractional anomalous thermal diffusion equation in composite medium
    Jiang, Xiaoyun
    Chen, Shanzhen
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (02): : 156 - 164
  • [22] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [23] Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation
    Maji, Sandip
    Natesan, Srinivasan
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 549 - 570
  • [24] Continuity of solutions to a nonlinear fractional diffusion equation
    Lorenzo Brasco
    Erik Lindgren
    Martin Strömqvist
    Journal of Evolution Equations, 2021, 21 : 4319 - 4381
  • [25] Solutions for a fractional diffusion equation with noninteger dimensions
    Lucena, L. S.
    da Silva, L. R.
    Tateishi, A. A.
    Lenzi, M. K.
    Ribeiro, H. V.
    Lenzi, E. K.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1955 - 1960
  • [26] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [27] Solutions for a fractional diffusion equation in heterogeneous media
    Lenzi, E. K.
    da Silva, L. R.
    Sandev, T.
    Zola, R. S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [28] Classical solutions for a logarithmic fractional diffusion equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 901 - 924
  • [29] Continuity of solutions to a nonlinear fractional diffusion equation
    Brasco, Lorenzo
    Lindgren, Erik
    Stromqvist, Martin
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4319 - 4381
  • [30] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308