ANALYSIS OF SPECTRAL PHOTOCURRENT RESPONSE FROM MULTI-JUNCTION SOLAR CELLS UNDER VARIABLE VOLTAGE BIAS

被引:16
|
作者
Lim, Swee H. [1 ]
O'Brien, Kevin [1 ]
Steenbergen, Elizabeth H. [1 ]
Li, Jing-Jing [1 ]
Ding, Ding [1 ]
Zhang, Yong-Hang [1 ]
机构
[1] Arizona State Univ, Ctr Nanophoton, Tempe, AZ 85287 USA
关键词
SUPERPOSITION PRINCIPLE;
D O I
10.1109/PVSC.2010.5617046
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrical and optical characterization of monolithically integrated multi-junction (MJ) solar cells is complicated by the fact that the internal subcells are not directly accessible. Two important characteristics of the MJ solar cell are the internal subcell I-V curves and the spectral photocurrent response. Techniques to obtain the subcell I-V curves as well as the spectral photocurrent response have been well demonstrated, however, the close connection between these two different measurements has not been exploited. Using small signal analysis, we establish the relationship between the subcell I-V response and the voltage dependence of the spectral photocurrent response. By an inverse analysis, we also show how to derive the subcell I-V curves from the voltage dependent spectral photocurrent response, providing a new and independent technique to extract the internal subcell I-V curves.
引用
收藏
页码:712 / 716
页数:5
相关论文
共 50 条
  • [31] Modeling of multi-junction solar cells by Crosslight APSYS
    Li, Z. Q.
    Xiao, Y. G.
    Li, Z. M. Simon
    HIGH AND LOW CONCENTRATION FOR SOLAR ELECTRIC APPLICATIONS, 2006, 6339
  • [32] GaAs/InGaAsN heterostructures for multi-junction solar cells
    Nikitina, E. V.
    Gudovskikh, A. S.
    Lazarenko, A. A.
    Pirogov, E. V.
    Sobolev, M. S.
    Zelentsov, K. S.
    Morozov, I. A.
    Egorov, A. Yu.
    SEMICONDUCTORS, 2016, 50 (05) : 652 - 655
  • [33] Analysis of a Four Lamp Flash System for Calibrating Multi-Junction Solar Cells under Concentrated Light
    Schachtner, Michael
    Prado, Marcelo Loyo
    Reichmuth, S. Kasimir
    Siefer, Gerald
    Bett, Andreas W.
    11TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-11), 2015, 1679
  • [34] III-V multi-junction solar cells
    1600, Royal Society of Chemistry (2014-January):
  • [35] GaAs/InGaAsN heterostructures for multi-junction solar cells
    E. V. Nikitina
    A. S. Gudovskikh
    A. A. Lazarenko
    E. V. Pirogov
    M. S. Sobolev
    K. S. Zelentsov
    I. A. Morozov
    A. Yu. Egorov
    Semiconductors, 2016, 50 : 652 - 655
  • [36] Nanobonding for Multi-Junction Solar Cells at Room Temperature
    Yu, T.
    Howlader, M. M. R.
    Zhang, F.
    Bakr, M.
    SILICON COMPATIBLE MATERIALS, PROCESSES, AND TECHNOLOGIES FOR ADVANCED INTEGRATED CIRCUITS AND EMERGING APPLICATIONS, 2011, 35 (02): : 3 - 10
  • [37] HIGH-EFFICIENCY MULTI-JUNCTION SOLAR CELLS
    JAMES, LW
    MOON, RL
    FAIRMAN, RD
    BELL, RL
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1975, 22 (11) : 1061 - 1061
  • [38] Spectrum tuning in multi-junction solar cells measurements
    Bogomolova, S. A.
    Shvarts, M. Z.
    Timoshina, N. Kh.
    INTERNATIONAL CONFERENCE PHYSICA.SPB/2016, 2017, 929
  • [39] Dendrite growth and degradation in multi-junction solar cells
    Speckman, D
    Marvin, D
    Nocerino, J
    PROGRESS IN PHOTOVOLTAICS, 2005, 13 (02): : 157 - 163
  • [40] Novel Environmental Protection for Multi-Junction Solar Cells
    Martinez, Carol L.
    Pellicori, Samuel F.
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,