Independent perfect domination sets in Cayley graphs

被引:65
|
作者
Lee, J [1 ]
机构
[1] Yeungnam Univ, Dept Math, Kyongsan 712749, South Korea
关键词
D O I
10.1002/jgt.1016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that a Cayley graph for an abelian group has an independent perfect domination set if and only if it is a covering graph of a complete graph. As an application, we show that the hypercube Q(n) has an independent perfect domination set if and only if Q(n) is a regular covering of the complete graph Kn+1 if and only if n = 2(m) - 1 for some natural number m. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 50 条
  • [21] Generalized perfect domination in graphs
    B. Chaluvaraju
    K. A. Vidya
    Journal of Combinatorial Optimization, 2014, 27 : 292 - 301
  • [22] Perfect Graphs for Domination Games
    Csilla Bujtás
    Vesna Iršič
    Sandi Klavžar
    Annals of Combinatorics, 2021, 25 : 133 - 152
  • [23] PERFECT EDGE DOMINATION IN GRAPHS
    Paspasan, Mohammad Nur S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 27 (02): : 173 - 181
  • [24] Perfect Roman domination in graphs
    Banerjee, S.
    Keil, J. Mark
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 1 - 21
  • [25] On regular sets in Cayley graphs
    Xiaomeng Wang
    Shou-Jun Xu
    Sanming Zhou
    Journal of Algebraic Combinatorics, 2024, 59 : 735 - 759
  • [26] Regular sets in Cayley graphs
    Yanpeng Wang
    Binzhou Xia
    Sanming Zhou
    Journal of Algebraic Combinatorics, 2023, 57 : 547 - 558
  • [27] Regular sets in Cayley graphs
    Wang, Yanpeng
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (02) : 547 - 558
  • [28] On regular sets in Cayley graphs
    Wang, Xiaomeng
    Xu, Shou-Jun
    Zhou, Sanming
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (03) : 735 - 759
  • [29] Subgroup perfect codes in cayley graphs
    Ma, Xuanlong
    Walls, Gary L.
    Wang, Kaishun
    Zhou, Sanming
    arXiv, 2019,
  • [30] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF GRAPHS
    SEIFTER, N
    ARS COMBINATORIA, 1994, 38 : 119 - 128