An integrative variant analysis suite for whole exome next-generation sequencing data

被引:202
|
作者
Challis, Danny [2 ]
Yu, Jin [2 ]
Evani, Uday S. [2 ]
Jackson, Andrew R. [1 ]
Paithankar, Sameer [1 ]
Coarfa, Cristian [1 ]
Milosavljevic, Aleksandar [1 ]
Gibbs, Richard A. [1 ,2 ]
Yu, Fuli [1 ,2 ]
机构
[1] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[2] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA
来源
BMC BIOINFORMATICS | 2012年 / 13卷
基金
美国国家卫生研究院;
关键词
DISCOVERY; CAPTURE; FORMAT;
D O I
10.1186/1471-2105-13-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data. Results: Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454). The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%). Conclusion: We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data
    Wei, Zhi
    Wang, Wei
    Hu, Pingzhao
    Lyon, Gholson J.
    Hakonarson, Hakon
    NUCLEIC ACIDS RESEARCH, 2011, 39 (19)
  • [42] Fast and scalable software for comparative variant analysis and visualization of massive next-generation sequencing data
    Katainen, Riku
    Makinen, Veli
    Aaltonen, Lauri A.
    Pitkanen, Esa
    CANCER RESEARCH, 2016, 76
  • [43] Identification of Human Viral Pathogens from Unmapped Next-Generation Sequencing Exome Data
    Sehn, J. K.
    Cimino, P. J.
    Lewis, J. S.
    Cao, S.
    Zhao, G.
    Wang, D.
    Duncavage, E.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2013, 15 (06): : 904 - 904
  • [44] Indexing Next-Generation Sequencing data
    Jalili, Vahid
    Matteucci, Matteo
    Masseroli, Marco
    Ceri, Stefano
    INFORMATION SCIENCES, 2017, 384 : 90 - 109
  • [45] Genome, Exome, and Targeted Next-Generation Sequencing in Neonatal Diabetes
    De Franco, Elisa
    Ellard, Sian
    PEDIATRIC CLINICS OF NORTH AMERICA, 2015, 62 (04) : 1037 - +
  • [46] Detection of focal somatic copy number variants in whole genome, whole exome, and targeted next-generation sequencing data of tumor/normal pairs
    Aldrich, Jessica
    Keats, Jonathan J.
    Liang, Winnie S.
    Carpten, John D.
    Craig, David W.
    CLINICAL CANCER RESEARCH, 2016, 22
  • [47] Next-Generation Diagnostics: Gene Panel, Exome, or Whole Genome?
    Sun, Yu
    Ruivenkamp, Claudia A. L.
    Hoffer, Mariette J. V.
    Vrijenhoek, Terry
    Kriek, Marjolein
    van Asperen, Christi J.
    den Dunnen, Johan T.
    Santen, Gijs W. E.
    HUMAN MUTATION, 2015, 36 (06) : 648 - 655
  • [48] SPARSE SIGNAL RECOVERY METHODS FOR VARIANT DETECTION IN NEXT-GENERATION SEQUENCING DATA
    Banuelos, Mario
    Almanza, Rubi
    Adhikari, Lasith
    Sindi, Suzanne
    Marcia, Roummel F.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 864 - 868
  • [49] Pathogen-Host Analysis Tool (PHAT): an integrative platform to analyze next-generation sequencing data
    Gibb, Christopher M.
    Jackson, Robert
    Mohammed, Sabah
    Fiaidhi, Jinan
    Zehbe, Ingeborg
    BIOINFORMATICS, 2019, 35 (15) : 2665 - 2667
  • [50] miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments
    Ming Wen
    Yang Shen
    Suhua Shi
    Tian Tang
    BMC Bioinformatics, 13