Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε-caprolactone) scaffolds

被引:116
|
作者
Domingos, M. [1 ,2 ,3 ]
Chiellini, F. [2 ,3 ]
Gloria, A. [4 ]
Ambrosio, L. [4 ]
Bartolo, P. [1 ]
Chiellini, E. [2 ,3 ]
机构
[1] Polytech Inst Leiria IPL, Ctr Rapid & Sustainable Prod Dev, Leiria, Portugal
[2] Univ Pisa, Lab Bioact Polymer Mat Biomed & Environm Applicat, Pisa, Italy
[3] Univ Pisa, Dept Chem & Ind Chem, Pisa, Italy
[4] CNR, Inst Composite & Biomed Mat, Naples, Italy
关键词
Mechanical properties of materials; Biotechnology; Biomanufacturing; Scaffolds; Process parameters; Morphological properties; POLYCAPROLACTONE SCAFFOLDS; POROUS SCAFFOLDS; TISSUE; CELLS; REGENERATION; FABRICATION; NANOFIBERS; OSTEOBLAST;
D O I
10.1108/13552541211193502
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - This paper aims to report a detailed study regarding the influence of process parameters on the morphological/mechanical properties of poly(epsilon-caprolactone) (PCL) scaffolds manufactured by using a novel extrusion-based system that is called BioExtruder. Design/methodology/approach - In this study the authors focused investigations on four parameters, namely the liquefier temperature (LT), screw rotation velocity (SRV), deposition velocity (DV) and slice thickness (ST). Scaffolds were fabricated by employing three different values of each parameter. Through a series of trials, scaffolds were manufactured varying iteratively one parameter while maintaining constant the other ones. The morphology of the structures was investigated using a scanning electron microscope (SEM), whilst the mechanical performance was assessed though compression tests. Findings - Experimental results highlight a direct influence of the process parameters on the PCL scaffolds properties. In particular, DV and SRV have the highest influence in terms of road width (RW) and consequently on the porosity and mechanical behaviour of the structures. Research limitations/implications - The effect of process and design parameters on the biological response of scaffolds is currently under investigation. Originality/value - The output of this work provides a major insight into the effect of process parameters on the morphological/mechanical properties of PCL scaffolds. Moreover, the potential and feasibility of this novel extrusion-based system open a new opportunity to study how structural features may influence the characteristics and performances of the scaffolds, enabling the development of integrated biomechanical models that can be used in CAD systems to manufacture customized structures for tissue regeneration.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [21] Effect of processing parameters on mechanical properties of 3D printed samples
    Maloch J.
    Hnátková E.
    Žaludek M.
    Krátký P.
    Materials Science Forum, 2018, 919 : 230 - 235
  • [22] Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK
    Pulipaka, Aditya
    Gide, Kunal Manoj
    Beheshti, Ali
    Bagheri, Z. Shaghayegh
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 85 : 368 - 386
  • [23] 3D Printed Multi-Functional Scaffolds Based on Poly(ε-Caprolactone) and Hydroxyapatite Composites
    Liu, Fan
    Kang, Honglei
    Liu, Zhiwei
    Jin, Siyang
    Yan, Guoping
    Sun, Yunlong
    Li, Feng
    Zhan, Haifei
    Gu, Yuantong
    NANOMATERIALS, 2021, 11 (09)
  • [24] Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds
    Juan, Po-Kai
    Fan, Fang-Yu
    Lin, Wei-Chun
    Liao, Pei-Bang
    Huang, Chiung-Fang
    Shen, Yung-Kang
    Ruslin, Muhammad
    Lee, Chen-Han
    POLYMERS, 2021, 13 (16)
  • [25] Preliminary study of surface modification of 3D Poly (ε - caprolactone) scaffolds by ultrashort laser irradiation
    Daskalova, A.
    Bliznakova, I.
    Iordanova, E.
    Yankov, G.
    Grozeva, M.
    Ostrowska, B.
    INERA CONFERENCE 2015: LIGHT IN NANOSCIENCE AND NANOTECHNOLOGY (LNN 2015), 2016, 682
  • [26] The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds
    Gloria, Antonio
    Frydman, B.
    Lamas, Miguel L.
    Serra, Armenio C.
    Martorelli, Massimo
    Coelho, Jorge F. J.
    Fonseca, Ana C.
    Domingos, M.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 98 : 994 - 1004
  • [27] The effect of 3D printing on the morphological and mechanical properties of polycaprolactone filament and scaffold
    Soufivand, Anahita Ahmadi
    Abolfathi, Nabiollah
    Hashemi, Ata
    Lee, Sang Jin
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (05) : 1038 - 1046
  • [28] Breast cancer stem cell culture and enrichment using poly(ε-caprolactone) 3D scaffolds
    Rabionet, Marc
    Palomeras, Sonia
    Ferrer, Ines
    Sarrats, Ariadna
    Giro-Perafita, Ariadna
    Garcia-Romeu, Maria Luisa
    Ciurana, Joaquim
    Puig, Teresa
    CANCER RESEARCH, 2016, 76
  • [29] Effect of angular variation and in vitro degradation on mechanical properties of PBAT 3D scaffolds
    de Barros, Rodrigo Rodrigues
    Balbinot, Gabriela de Souza
    Vassoler, Jakson Manfredini
    Soares, Rosane Michele Duarte
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (23)
  • [30] The use of thermal treatments to enhance the mechanical properties of electrospun poly (ε-caprolactone) scaffolds
    Lee, Sang Jin
    Oh, Se Heang
    Liu, Jie
    Soker, Shay
    Atala, Anthony
    Yoo, James J.
    BIOMATERIALS, 2008, 29 (10) : 1422 - 1430