Enhancing principal direction divisive clustering

被引:23
|
作者
Tasoulis, S. K. [1 ]
Tasoulis, D. K. [2 ]
Plagianakos, V. P. [1 ]
机构
[1] Univ Cent Greece, Dept Comp Sci & Biomed Informat, Lamia 35100, Greece
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
Clustering; Principal component analysis; Kernel density estimation; ALGORITHM; CLASSIFICATION; SELECTION;
D O I
10.1016/j.patcog.2010.05.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While data clustering has a long history and a large amount of research has been devoted to the development of numerous clustering techniques, significant challenges still remain. One of the most important of them is associated with high data dimensionality. A particular class of clustering algorithms has been very successful in dealing with such datasets, utilising information driven by the principal component analysis. In this work, we try to deepen our understanding on what can be achieved by this kind of approaches. We attempt to theoretically discover the relationship between true clusters in the data and the distribution of their projection onto the principal components. Based on such findings, we propose appropriate criteria for the various steps involved in hierarchical divisive clustering and develop compilations of them into new algorithms. The proposed algorithms require minimal user-defined parameters and have the desirable feature of being able to provide approximations for the number of clusters present in the data. The experimental results indicate that the proposed techniques are effective in simulated as well as real data scenarios. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3391 / 3411
页数:21
相关论文
共 50 条
  • [21] Divisive clustering of high dimensional data streams
    David P. Hofmeyr
    Nicos G. Pavlidis
    Idris A. Eckley
    Statistics and Computing, 2016, 26 : 1101 - 1120
  • [22] Refining a divisive partitioning algorithm for unsupervised clustering
    Kruengkrai, C
    Sornlertlamvanich, V
    Isahara, H
    DESIGN AND APPLICATION OF HYBRID INTELLIGENT SYSTEMS, 2003, 104 : 535 - 542
  • [23] Divisive clustering of high dimensional data streams
    Hofmeyr, David P.
    Pavlidis, Nicos G.
    Eckley, Idris A.
    STATISTICS AND COMPUTING, 2016, 26 (05) : 1101 - 1120
  • [24] An Extension of PROMETHEE to Divisive Hierarchical Multicriteria Clustering
    De Smet, Y.
    2014 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2014, : 555 - 558
  • [25] DHCC: Divisive hierarchical clustering of categorical data
    Tengke Xiong
    Shengrui Wang
    André Mayers
    Ernest Monga
    Data Mining and Knowledge Discovery, 2012, 24 : 103 - 135
  • [26] DHCC: Divisive hierarchical clustering of categorical data
    Xiong, Tengke
    Wang, Shengrui
    Mayers, Andre
    Monga, Ernest
    DATA MINING AND KNOWLEDGE DISCOVERY, 2012, 24 (01) : 103 - 135
  • [27] A divisive hierarchical clustering methodology for enhancing the ensemble prediction power in large scale population studies: the ATHLOS project
    Petros Barmpas
    Sotiris Tasoulis
    Aristidis G. Vrahatis
    Spiros V. Georgakopoulos
    Panagiotis Anagnostou
    Matthew Prina
    José Luis Ayuso-Mateos
    Jerome Bickenbach
    Ivet Bayes
    Martin Bobak
    Francisco Félix Caballero
    Somnath Chatterji
    Laia Egea-Cortés
    Esther García-Esquinas
    Matilde Leonardi
    Seppo Koskinen
    Ilona Koupil
    Andrzej Paja̧k
    Martin Prince
    Warren Sanderson
    Sergei Scherbov
    Abdonas Tamosiunas
    Aleksander Galas
    Josep Maria Haro
    Albert Sanchez-Niubo
    Vassilis P. Plagianakos
    Demosthenes Panagiotakos
    Health Information Science and Systems, 10
  • [28] A divisive hierarchical clustering methodology for enhancing the ensemble prediction power in large scale population studies: the ATHLOS project
    Barmpas, Petros
    Tasoulis, Sotiris
    Vrahatis, Aristidis G.
    Georgakopoulos, Spiros, V
    Anagnostou, Panagiotis
    Prina, Matthew
    Ayuso-Mateos, Jose Luis
    Bickenbach, Jerome
    Bayes, Ivet
    Bobak, Martin
    Caballero, Francisco Felix
    Chatterji, Somnath
    Egea-Cortes, Laia
    Garcia-Esquinas, Esther
    Leonardi, Matilde
    Koskinen, Seppo
    Koupil, Ilona
    Pajak, Andrzej
    Prince, Martin
    Sanderson, Warren
    Scherbov, Sergei
    Tamosiunas, Abdonas
    Galas, Aleksander
    Haro, Josep Maria
    Sanchez-Niubo, Albert
    Plagianakos, Vassilis P.
    Panagiotakos, Demosthenes
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2022, 10 (01)
  • [29] Modeling of behavior and intelligence - A nonhierarchical divisive clustering algorithm
    Dvoenko, SD
    AUTOMATION AND REMOTE CONTROL, 1999, 60 (04) : 586 - 591
  • [30] DICLENS: Divisive Clustering Ensemble with Automatic Cluster Number
    Mimaroglu, Selim
    Aksehirli, Emin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (02) : 408 - 420