On Hamilton-Jacobi equations for neutral-type differential games

被引:3
|
作者
Gomoyunov, Mikhail [1 ,2 ]
Plaksin, Anton [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, NN Krasovskii Inst Math & Mech, S Kovalevskaya Str 16, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Mira Str 19, Ekaterinburg 620002, Russia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 14期
关键词
neutral-type system; differential game; Hamilton-Jacobi equation; coinvariant derivatives; value functional; optimal strategies; SYSTEMS;
D O I
10.1016/j.ifacol.2018.07.218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a two-person zero-sum differential game in which a motion of the dynamical system is described by neutral-type functional-differential equations in Hale's form and the quality index estimates a motion history realized up to the terminal instant of time and includes integral estimations of control realizations of the players. The formalization of the game in the class of pure positional strategies is given, the corresponding notions of the value functional and optimal control strategies of the players are defined. For the value functional, we derive a Hamilton-Jacobi type equation with coinvariant derivatives. It is proved that, if a solution of this equation satisfies certain smoothness conditions, then it coincides with the value functional. On the other hand, it is proved that, at the points of coinvariant differentiability, the value functional satisfies the derived Hamilton-Jacobi equation. Therefore, this equation can be called the Hamilton-Jacobi-Bellman-Isaacs equation for neutral-type systems. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [31] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [32] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [33] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [34] An iterative algorithm for solving Hamilton-Jacobi type equations
    Markman, J
    Katz, IN
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 312 - 329
  • [35] Representation Formulas for Contact Type Hamilton-Jacobi Equations
    Hong, Jiahui
    Cheng, Wei
    Hu, Shengqing
    Zhao, Kai
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (03) : 2315 - 2327
  • [36] Global subanalytic solutions of Hamilton-Jacobi type equations
    Trélat, E
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (03): : 363 - 387
  • [37] Fully nonlinear Hamilton-Jacobi equations of degenerate type
    Jesus, David
    Pimentel, Edgard A.
    Urbano, Jose Miguel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [38] Representation Formulas for Contact Type Hamilton-Jacobi Equations
    Jiahui Hong
    Wei Cheng
    Shengqing Hu
    Kai Zhao
    Journal of Dynamics and Differential Equations, 2022, 34 : 2315 - 2327
  • [39] Implicit Difference Methods for Hamilton-Jacobi Functional Differential Equations
    Kamont, Z.
    Czernous, W.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2009, 2 (01) : 46 - 57
  • [40] HAMILTON-JACOBI EQUATIONS AND TWO-PERSON ZERO-SUM DIFFERENTIAL GAMES WITH UNBOUNDED CONTROLS
    Qiu, Hong
    Yong, Jiongmin
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (02) : 404 - 437