For a Seifert fibered homology sphere X$X$, we show that the q$q$-series invariant Z0(X;q)$\hat{\operatorname{Z}}_0(X;q)$, introduced by Gukov-Pei-Putrov-Vafa, is a resummation of the Ohtsuki series Z0(X)$\operatorname{Z}_0(X)$. We show that for every even k is an element of N$k \in \mathbb {N}$ there exists a full asymptotic expansion of Z0(X;q)$ \hat{\operatorname{Z}}_0(X;q)$ for q$q$ tending to e2 pi i/k$e<^>{2\pi i/k}$, and in particular that the limit Z0(X;e2 pi i/k)$\hat{\operatorname{Z}}_0(X;e<^>{2\pi i/k})$ exists and is equal to the Witten-Reshetikhin-Turaev quantum invariant tau k(X)$\tau _k(X)$. We show that the poles of the Borel transform of Z0(X)$\operatorname{Z}_0(X)$ coincide with the classical complex Chern-Simons values, which we further show classifies the corresponding components of the moduli space of flat SL(2,C)$\rm {SL}(2,\mathbb {C})$-connections.
机构:
Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kitashirakawa Oiwakecho, Kyoto 6068502, JapanKyoto Univ, Math Sci Res Inst, Sakyo Ku, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
Habiro, Kazuo
Le, Thang T. Q.
论文数: 0引用数: 0
h-index: 0
机构:Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Morita, Shigeyuki
Sakasai, Takuya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Sakasai, Takuya
Suzuki, Masaaki
论文数: 0引用数: 0
h-index: 0
机构:
Meiji Univ, Dept Frontier Media Sci, Nakano Ku, 4-21-1 Nakano, Tokyo 1648525, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan