Hydrothermal synthesis and characterization of TiO2 nanostructures using LiOH as a solvent

被引:12
|
作者
Zanganeh, Saeid [1 ,2 ]
Kajbafvala, Amir [3 ]
Zanganeh, Navid [4 ]
Molaei, Roya [5 ]
Bayati, M. R. [5 ]
Zargar, H. R. [5 ]
Sadrnezhaad, S. K. [1 ]
机构
[1] Sharif Univ Technol, Dept Mat Sci & Engn, Ctr Excellence Prod Adv Mat, Tehran, Iran
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[4] Amirkabir Univ Technol, Dept Chem Engn, Tehran, Iran
[5] Iran Univ Sci & Technol, Dept Met & Mat Engn, Tehran, Iran
关键词
Inorganic materials; Nanostructured materials; Hydrothermal synthesis; Nanofabrications; OXIDE NANOTUBES; NANORODS; FILMS;
D O I
10.1016/j.apt.2010.04.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the present study, we performed hydrothermal method as a simple and efficient route for the synthesis of rutile TiO2 nanostructures in various concentrations of lithium hydroxide solutions. TiO2 nanopowders with average sizes of 15 and 23 nm were prepared using 4 M and 7 M LiOH solutions. X-ray diffraction analysis (XRD), transmission electron microscope (FEG-STEM), scanning electron microscopy (SEM), and Brunauer-Emmet-Teller (BET) analyses were used in order to characterize the obtained products and comparison of the morphology of the powders obtained in different concentrations of LiOH solvent. It was shown that alkali solution concentration has affected the crystallinity, agglomeration ratio, particle size and specific surface area of the obtained rutile phases. (c) 2010 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
引用
收藏
页码:336 / 339
页数:4
相关论文
共 50 条
  • [11] Solvent-controlled synthesis of TiO2 1D nanostructures:: Growth mechanism and characterization
    Das, Kajari
    Panda, Subhendu K.
    Chaudhuri, Subhadra
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (16) : 3792 - 3799
  • [12] Hydrothermal Synthesis of Anatase TiO2 Nanorods with High Crystallinity Using Ammonia Solution as a Solvent
    Zhang, Dong Ri
    Cha, Hyun Gil
    Kang, Young Soo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (07) : 6007 - 6012
  • [13] Influence Of TiCl4 Precursor In Hydrothermal Synthesis Of TiO2 Nanostructures
    Kartikay, Purnendu
    Nemala, Siva Sankar
    Mallick, Sudhanshu
    61ST DAE-SOLID STATE PHYSICS SYMPOSIUM, 2017, 1832
  • [14] Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization
    Mali, Sawanta S.
    Shinde, Pravin S.
    Betty, C. A.
    Bhosale, Popatrao N.
    Lee, Won J.
    Patil, Pramod S.
    APPLIED SURFACE SCIENCE, 2011, 257 (23) : 9737 - 9746
  • [15] Hydrothermal synthesis of rutile TiO2 with hierarchical microspheres and their characterization
    Mali, Sawanta S.
    Betty, Chirayath A.
    Bhosale, Popatrao N.
    Patil, Pramod S.
    CRYSTENGCOMM, 2011, 13 (21) : 6349 - 6351
  • [16] Solid state dispersion and hydrothermal synthesis, characterization and evaluations of TiO2/ZnO nanostructures for degradation of Rhodamine B
    Dolatabadi, Siamak
    Fattahi, Moslem
    Nabati, Mohammad
    DESALINATION AND WATER TREATMENT, 2021, 231 : 425 - 435
  • [17] New hydrothermal process for hierarchical TiO2 nanostructures
    Sinha, Arun Kumar
    Jana, Subhra
    Pande, Surojit
    Sarkar, Sougata
    Pradhan, Mukul
    Basu, Mrinmoyee
    Saha, Sandip
    Pal, Anjali
    Pal, Tarasankar
    CRYSTENGCOMM, 2009, 11 (07): : 1210 - 1212
  • [18] Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2
    Yin, HB
    Wada, Y
    Kitamura, T
    Kambe, S
    Murasawa, S
    Mori, H
    Sakata, T
    Yanagida, S
    JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (06) : 1694 - 1703
  • [19] HYDROTHERMAL SYNTHESIS OF BROOKITE TIO2
    SCHWARZMANN, E
    OGNIBENI, KH
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 1974, B 29 (5-6): : 435 - 435
  • [20] Hydrothermal synthesis of different TiO2 nanostructures: structure, growth and gas sensor properties
    Long Huang
    Tianmo Liu
    Hejing Zhang
    WeiWei Guo
    Wen Zeng
    Journal of Materials Science: Materials in Electronics, 2012, 23 : 2024 - 2029