Mechanisms of defect formation in ingots of 4H silicon carbide polytype

被引:2
|
作者
Avrov, D. D. [1 ]
Bulatov, A. V. [1 ]
Dorozhkin, S. I. [1 ]
Lebedev, A. O. [2 ]
Tairov, Yu. M. [1 ]
Fadeev, A. Yu. [1 ]
机构
[1] LETI St Petersburg State Electrotech Univ, St Petersburg 197376, Russia
[2] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
PHYSICAL VAPOR TRANSPORT; CRYSTALS; GROWTH;
D O I
10.1134/S1063782611030055
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The methods of optical microscopy and X-ray diffractometry have been used to study the features of defect structure in ingots of the SiC-4H polytype; the ingots have featured different diameters and have been grown by the modified Lely method on seeds with deviations of several degrees from the exact orientation (0001)C in the direction < 11 (2) over bar0 > (off-cut (0001) seeds). The slip bands observed in the crystals are extended along the [11 (2) over bar0] direction and correspond to the secondary slip system of threading dislocations a/3 < 11 (2) over bar0 >{(1) over bar 100} for hexagonal close packing (HCP) crystals. Low-angle dislocation boundaries directed along [1 (1) over bar 00] accommodate the disorientation of neighboring domains, which results from their mutual rotation around the [0001] axis. Enlargement of ingots leads to some increase in the dislocation density, mainly due to threading edge dislocations. The average density of micropipes is in the range of 5-20 cm(-2) and practically remains unchanged as the ingot size is increased.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [21] NMR Studies of Nitrogen Doping in the 4H Polytype of Silicon Carbide: Site Assignments and Spin-Lattice Relaxation
    Hartman, J. Stephen
    Berno, Bob
    Hazendonk, Paul
    Kirby, Christopher W.
    Ye, Eric
    Zwanziger, Josef
    Bain, Alex D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33): : 15024 - 15036
  • [22] Polytype formation in silicon carbide single crystals
    Li, Xiang-Biao
    Shi, Er-Wei
    Chen, Zhi-Zhan
    Xiao, Bing
    DIAMOND AND RELATED MATERIALS, 2007, 16 (03) : 654 - 657
  • [23] Dislocation conversion in 4H silicon carbide epitaxy
    Ha, S
    Mieszkowski, P
    Skowronski, M
    Rowland, LB
    JOURNAL OF CRYSTAL GROWTH, 2002, 244 (3-4) : 257 - 266
  • [24] Investigation of microplasma breakdown in 4H silicon carbide
    Zimmermann, U
    Hallen, A
    Konstantinov, AO
    Breitholtz, B
    WIDE-BANDGAP SEMICONDUCTORS FOR HIGH POWER, HIGH FREQUENCY AND HIGH TEMPERATURE, 1998, 512 : 151 - 156
  • [25] Implantation and annealing of aluminum in 4H silicon carbide
    Rambach, M
    Schmid, F
    Krieger, M
    Frey, L
    Bauer, AJ
    Pensl, G
    Ryssel, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 237 (1-2): : 68 - 71
  • [26] Bistable defect in mega-electron-volt proton implanted 4H silicon carbide
    Martin, DM
    Kortegaard Nielsen, H
    Léveque, P
    Hallén, A
    Alfieri, G
    Svensson, BG
    APPLIED PHYSICS LETTERS, 2004, 84 (10) : 1704 - 1706
  • [27] Impact ionization coefficients of 4H silicon carbide
    Hatakeyama, T
    Watanabe, T
    Shinohe, T
    Kojima, K
    Arai, K
    Sano, N
    APPLIED PHYSICS LETTERS, 2004, 85 (08) : 1380 - 1382
  • [28] Defects in 4H silicon carbide CVD epilayers
    Zhou, L
    Pirouz, P
    Powell, JA
    DEFECTS IN ELECTRONIC MATERIALS II, 1997, 442 : 631 - 636
  • [29] Low frequency noise in 4H silicon carbide
    Levinshtein, ME
    Rumyantsev, SL
    Palmour, JW
    Slater, DB
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (04) : 1758 - 1762
  • [30] Infrared absorption spectra of 4H silicon carbide
    C.Q. Chen
    R. Helbig
    F. Engelbrecht
    J. Zeman
    Applied Physics A, 2001, 72 : 717 - 720