Spatial-Temporal Dynamic Graph Convolution Neural Network for Air Quality Prediction

被引:16
|
作者
Xiaocao, Ouyang [1 ]
Yang, Yan [1 ]
Zhang, Yiling [1 ]
Zhou, Wei [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
air quality prediction; graph neural networks; spatial-temporal graph;
D O I
10.1109/IJCNN52387.2021.9534167
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air quality prediction has received widespread attention from both the governments and citizens due to its close relation to our lives. Analyzing the spatial relations and temporal trends in air quality data is essential for air quality prediction task. However, most existing approaches require a pre-defined graph structure to capture the spatial dependencies of air quality data, and thus they can not be applied when a well-defined graph structure is unavailable. Besides, those methods do not give sufficient consideration to the latent relationships among entities of the graph over time. To overcome the above limitations, we propose a Spatial-Temporal Dynamic Graph Convolution Neural Network (ST-DGCN) in this paper. Our approach develops a dynamic adjacency matrix into graph convolution layer, which extracts the potential and time-varying spatial dependencies. To jointly model the spatial and temporal correlations, we combine dynamic graph convolution with gated recurrent unit and propose a unified DGC-GRU block. Next, a residual operation is further introduced into the DGC-GRU to simultaneously handle the information from different particles. Experimental results demonstrate that the proposed method outperforms the state-of-art baselines on two real-world air quality datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Spatial-temporal Prediction of Air Quality based on Recurrent Neural Networks
    Sun, Xiaotong
    Xu, Wei
    Jiang, Hongxun
    PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2019, : 1265 - 1274
  • [32] A three-dimensional dynamic spatial-temporal graph neural network for ocean temperature field prediction
    Zhang, Shuai
    Li, Zhuolin
    He, Xiaoyu
    Yu, Jie
    Xu, Lingyu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 149
  • [33] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7th International Conference on Intelligent Transportation Engineering, ICITE 2022, 2022, : 272 - 277
  • [34] Multi-View Spatial-Temporal Graph Neural Network for Traffic Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Huang, HongJie
    Yun, JinPeng
    Huang, LongJi
    COMPUTER JOURNAL, 2023, 66 (10): : 2393 - 2408
  • [35] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 272 - 277
  • [36] Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network
    Liu, Zhongbo
    Li, Mingkui
    Zhao, Jianli
    Sun, Qiuxia
    Zhuo, Futong
    2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC 2021, 2021, : 77 - 81
  • [37] Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction
    Wang, Xing
    Yang, Kexin
    Wang, Zhendong
    Feng, Junlan
    Zhu, Lin
    Zhao, Juan
    Deng, Chao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4026 - 4032
  • [38] Dynamic Origin-Destination Flow Prediction Using Spatial-Temporal Graph Convolution Network With Mobile Phone Data
    Liu, Zhichen
    Liu, Zhiyuan
    Fu, Xiao
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (05) : 147 - 161
  • [39] Spatial-temporal associations representation and application for process monitoring using graph convolution neural network
    Ren, Hao
    Liang, Xiaojun
    Yang, Chunhua
    Chen, Zhiwen
    Gui, Weihua
    arXiv, 2022,
  • [40] Spatial-temporal associations representation and application for process monitoring using graph convolution neural network
    Ren, Hao
    Liang, Xiaojun
    Yang, Chunhua
    Chen, Zhiwen
    Gui, Weihua
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 35 - 47