Spatial-Temporal Dynamic Graph Convolution Neural Network for Air Quality Prediction

被引:16
|
作者
Xiaocao, Ouyang [1 ]
Yang, Yan [1 ]
Zhang, Yiling [1 ]
Zhou, Wei [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
air quality prediction; graph neural networks; spatial-temporal graph;
D O I
10.1109/IJCNN52387.2021.9534167
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air quality prediction has received widespread attention from both the governments and citizens due to its close relation to our lives. Analyzing the spatial relations and temporal trends in air quality data is essential for air quality prediction task. However, most existing approaches require a pre-defined graph structure to capture the spatial dependencies of air quality data, and thus they can not be applied when a well-defined graph structure is unavailable. Besides, those methods do not give sufficient consideration to the latent relationships among entities of the graph over time. To overcome the above limitations, we propose a Spatial-Temporal Dynamic Graph Convolution Neural Network (ST-DGCN) in this paper. Our approach develops a dynamic adjacency matrix into graph convolution layer, which extracts the potential and time-varying spatial dependencies. To jointly model the spatial and temporal correlations, we combine dynamic graph convolution with gated recurrent unit and propose a unified DGC-GRU block. Next, a residual operation is further introduced into the DGC-GRU to simultaneously handle the information from different particles. Experimental results demonstrate that the proposed method outperforms the state-of-art baselines on two real-world air quality datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dynamic graph convolution neural network based on spatial-temporal correlation for air quality prediction
    Dun, Ao
    Yang, Yuning
    Lei, Fei
    ECOLOGICAL INFORMATICS, 2022, 70
  • [2] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [3] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [4] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [5] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [6] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16655 - 16668
  • [7] Spatial-Temporal Complex Graph Convolution Network for Traffic Flow Prediction
    Bao, Yinxin
    Huang, Jiashuang
    Shen, Qinqin
    Cao, Yang
    Ding, Weiping
    Shi, Zhenquan
    Shi, Quan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [8] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Lyuchao Liao
    Zhiyuan Hu
    Yuxin Zheng
    Shuoben Bi
    Fumin Zou
    Huai Qiu
    Maolin Zhang
    Applied Intelligence, 2022, 52 : 16104 - 16116
  • [9] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [10] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176