AdapterHub Playground: Simple and Flexible Few-Shot Learning with Adapters

被引:0
|
作者
Beck, Tilman [1 ]
Bohlender, Bela [1 ]
Viehmann, Christina [2 ]
Hane, Vincent [1 ]
Adamson, Yanik [1 ]
Khuri, Jaber [1 ]
Brossmann, Jonas [1 ]
Pfeiffer, Jonas [1 ]
Gurevych, Iryna [1 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, Ubiquitous Knowledge Proc Lab UKP Lab, Darmstadt, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Publizist, Mainz, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The open-access dissemination of pretrained language models through online repositories has led to a democratization of state-of-the-art natural language processing (NLP) research. This also allows people outside of NLP to use such models and adapt them to specific use-cases. However, a certain amount of technical proficiency is still required which is an entry barrier for users who want to apply these models to a certain task but lack the necessary knowledge or resources. In this work, we aim to overcome this gap by providing a tool which allows researchers to leverage pretrained models without writing a single line of code. Built upon the parameter-efficient adapter modules for transfer learning, our AdapterHub Playground provides an intuitive interface, allowing the usage of adapters for prediction, training and analysis of textual data for a variety of NLP tasks. We present the tool's architecture and demonstrate its advantages with prototypical use-cases, where we show that predictive performance can easily be increased in a few-shot learning scenario. Finally, we evaluate its usability in a user study. We provide the code and a live interface(1).
引用
收藏
页码:61 / 75
页数:15
相关论文
共 50 条
  • [21] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [22] A Feature Generator for Few-Shot Learning
    Kanagalingam, Heethanjan
    Pathmanathan, Thenukan
    Ketheeswaran, Navaneethan
    Vathanakumar, Mokeeshan
    Afham, Mohamed
    Rodrigo, Ranga
    arXiv,
  • [23] Few-shot learning for ear recognition
    Zhang, Jie
    Yu, Wen
    Yang, Xudong
    Deng, Fang
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 50 - 54
  • [24] Few-Shot Learning with Novelty Detection
    Bjerge, Kim
    Bodesheim, Paul
    Karstoft, Henrik
    DEEP LEARNING THEORY AND APPLICATIONS, PT I, DELTA 2024, 2024, 2171 : 340 - 363
  • [25] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [26] Few-Shot Learning With a Strong Teacher
    Ye, Han-Jia
    Ming, Lu
    Zhan, De-Chuan
    Chao, Wei-Lun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1425 - 1440
  • [27] Local Propagation for Few-Shot Learning
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10457 - 10464
  • [28] Few-Shot Learning With Class Imbalance
    Ochal M.
    Patacchiola M.
    Vazquez J.
    Storkey A.
    Wang S.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (05): : 1348 - 1358
  • [29] Explore pretraining for few-shot learning
    Yan Li
    Jinjie Huang
    Multimedia Tools and Applications, 2024, 83 : 4691 - 4702
  • [30] Few-Shot Learning for Defence and Security
    Robinson, Todd
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS II, 2020, 11413